
IBM XL C/C++ compilers features

IBM

December 2018

References in this document to IBM products, programs, or services do not imply that IBM intends to make these
available in all countries in which IBM operates. Any reference to an IBM program product in this publication is not
intended to state or imply that only IBM's program product may be used. Any functionally equivalent program
may be used instead.

IBM, the IBM logo, ibm.com, AIX, Power, POWER, POWER6, POWER7, POWER8, POWER9, Power Architecture,
Power Systems, PurifyPlus, Rational, Rational Team Concert, z/OS, z/VM, and z Systems are trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service
names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Intel is a trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

NVIDIA and CUDA are either registered trademarks or trademarks of NVIDIA Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

© Copyright IBM Corporation 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

www.ibm.com/legal/copytrade.shtml

Chapter 1. Introduction

This paper details what's new in the following members of the IBM® XL C/C++
compiler family: IBM XL C for AIX®, XL C/C++ for AIX, and XL C/C++ for Linux.

Compiler features vary slightly by operating system platform, and
platform-specific features are described in the appropriate sections. The IBM XL
C/C++ compilers share the common features described below unless otherwise
noted.

IBM XL C for AIX, XL C/C++ for AIX, and XL C/C++ for Linux are part of a
multiplatform XL compiler family derived from a common code base optimized to
run on IBM Power Architecture®. These are industry leading optimizing compiler
products that support IBM Power® systems. IBM XL C/C++ fully exploits
POWER6®, POWER7®, POWER8®, and POWER9™ architectures.

For more information about the benchmarks for IBM Power Systems™, see:
v www.ibm.com/systems/power (IBM Power Systems)
v www.spec.org
v www.tpc.org/tpcc/

Starting from V13.1.1, IBM XL C/C++ for Linux for little endian distributions runs
on IBM Power Systems and is based on the Clang open source framework. The
compiler combines the Clang front-end infrastructure with the advanced
optimization technology from IBM in the compiler back end. It enables
straightforward migration of applications to IBM Power Systems while delivering
optimal performance.

Note that the version that follows XL C/C++ for Linux, V13.1.6 is V16.1. Starting
from V16.1, IBM XL C/C++ for Linux stops to ship the big endian distributions.

IBM XL C/C++ for Linux, V16.1.1 offers the full support for OpenMP API Version
4.0 and OpenMP API Version 4.5.

You can run XL C/C++ for Linux, V16.1.1 on the following POWER9 technology
based servers:
v Ubuntu Server 16.04
v Ubuntu Server 18.04
v SUSE Linux Enterprise Server 12 (SLES 12)
v SUSE Linux Enterprise Server 12 Service Pack 3 (SLES 12 SP3)
v SUSE Linux Enterprise Server 15 (SLES 15)
v Red Hat Enterprise Linux 7.4 (RHEL 7.4)
v Red Hat Enterprise Linux 7.5 (RHEL 7.5)
v Red Hat Enterprise Linux 7.5 for Power Little Endian (POWER9)
v Community Enterprise Operating System 7 (CentOS 7)

To compile and link programs that contain code to be offloaded to the NVIDIA
GPUs with IBM XL C/C++ for Linux, V16.1 or higher releases, you must ensure
the following operating system, hardware, and software requirements are met.

© Copyright IBM Corp. 2018 1

www.ibm.com/systems/power
www.spec.org
www.tpc.org/tpcc/

v Use any IBM Power Systems™ server that has one or more NVIDIA GPUs
installed and is supported by your Linux operating system distribution and the
NVIDIA CUDA Toolkit.

v Use a system that satisfies the installation requirements of the CUDA Toolkit.
See the NVIDIA CUDA Toolkit website for more information.

v Install CUDA Toolkit 9.2.

For more information, see: https://www.ibm.com/us-en/marketplace/xl-cpp-
linux-compiler-power.

In IBM XL C/C++ for AIX V16.1, in addition to the legacy IBM XL-based compiler
front end, the compiler provides a Clang-based front end, which is invoked by the
xlclang or xlclang++ invocation command. The compiler combines the Clang
front-end infrastructure with the advanced optimization technology from IBM in
the compiler back end. The Clang-based front end supplies the full support of C11,
C++11, and C++14 language standards and the enhanced GCC compatibility.

Note that the version that follows XL C/C++ for AIX, V13.1.3 is V16.1.

XL C/C++ for AIX, V16.1 support IBM Power Systems capable of running
following operating systems:
v IBM AIX V7.1 TL4
v IBM AIX V7.2
v IBM i V7.3 PASE V7.3

For more information, see https://www.ibm.com/us-en/marketplace/xl-c-aix-
compiler-power and https://www.ibm.com/us-en/marketplace/xl-cpp-aix-
compiler-power.

Other members of the IBM XL C/C++ compiler family include XL C/C++ for
Linux on z Systems®, XL C/C++ for z/VM®, and z/OS® XL C/C++, which are not
in the scope of this whitepaper.
v XL C/C++ for Linux on z Systems

IBM XL C/C++ for Linux on z Systems is an advanced, high-performance
compiler that can be used for developing complex, computationally intensive
C/C++ programs for Linux on z Systems. For more information, see:
http://ibm.biz/xlcpp-loz.

v XL C/C++ for z/VM

IBM® XL C/C++ for z/VM® is an optimizing compiler designed for developing
large, complex, computationally-intensive applications. IBM XL C/C++ for
z/VM lets you write C and C++ applications that are optimized for IBM Z®

systems hardware. For more information, see: https://www.ibm.com/us-en/
marketplace/xl-cpp-compiler-zvm.

v z/OS XL C/C++

IBM® z/OS® XL C/C++ exploits the latest z/Architecture®, including the latest
IBM z14™ servers. It enables development of high-performing business
applications and system programs on z/OS, while maximizing hardware use
and improving application performance. For more information, see:
https://www.ibm.com/us-en/marketplace/xl-cpp-compiler-zos.

2 IBM XL C/C++ compilers features

https://developer.nvidia.com/cuda-toolkit
https://www.ibm.com/us-en/marketplace/xl-cpp-linux-compiler-power
https://www.ibm.com/us-en/marketplace/xl-cpp-linux-compiler-power
https://www.ibm.com/us-en/marketplace/xl-c-aix-compiler-power
https://www.ibm.com/us-en/marketplace/xl-c-aix-compiler-power
https://www.ibm.com/us-en/marketplace/xl-cpp-aix-compiler-power
https://www.ibm.com/us-en/marketplace/xl-cpp-aix-compiler-power
http://ibm.biz/xlcpp-loz
https://www.ibm.com/us-en/marketplace/xl-cpp-compiler-zvm
https://www.ibm.com/us-en/marketplace/xl-cpp-compiler-zvm
https://www.ibm.com/us-en/marketplace/xl-cpp-compiler-zos

IBM XL C/C++ compilers support C and C++ international standards and industry
specifications, facilitating application portability across hardware platforms and
operating systems. The compilers support a large array of common language
features.

On Linux, the increased compatibility with GNU C/C++ gives you the flexibility
to build different parts of your application with either the IBM or GNU compiler,
and still bind the parts together into a single application. One common use of this
functionality is to build an application with IBM XL C/C++ that interacts with the
GNU-built dynamic libraries, without recompiling the library source code.
Applications built with this functionality can integrate with GNU assembler, and
also provide full support for debugging through gdb, the GNU debugger.

On AIX, the Clang-based front end of IBM XL C/C++ for AIX, V16.1 supports
more GCC options and GCC pragmas than previous releases, and you are
encouraged to use GCC options instead of legacy XL compile options wherever
possible. However, no binary compatibility between code generated by IBM XL
C/C++ for AIX and GCC is provided. You cannot mix and match binaries
generated by gcc or g++ and those by xlclang or xlclang++.

IBM XL C/C++ compilers on AIX and Linux also offer support for the IBM XL
Fortran compilers on AIX and Linux through interlanguage calls.

IBM XL C/C++ offers developers the opportunity to create and optimize 32-bit and
64-bit applications for the AIX and big endian Linux platforms, and 64-bit
applications for the little endian Linux platform. On operating systems and
architectures supporting the VMX instruction set, the IBM XL C/C++ compilers
allow you to take advantage of the AltiVec programming model and APIs. They
also allow you to improve the performance of your data and CPU intensive
applications by exploiting the cutting edge IBM XL C/C++ automatic SIMD
vectorization technology.

Information on IBM XL C and XL C/C++ compilers is available at:

https://www.ibm.com/us-en/marketplace/ibm-c-and-c-plus-plus-compiler-family

Chapter 1. Introduction 3

https://www.ibm.com/us-en/marketplace/ibm-c-and-c-plus-plus-compiler-family

4 IBM XL C/C++ compilers features

Chapter 2. Standards conformance

IBM XL compilers strive to maximize the performance of scientific, technical, and
commercial applications on server platforms. Multiple operating system availability
ensures cross-platform portability, augmented by standards compliance.

Starting from XL C for AIX, V13.1, XL C/C++ for AIX, V13.1, and XL C/C++ for
Linux, V13.1, conformance to the following language standards and industry
specifications is provided:
v C89, C99, and selected features of the C11 standard
v C++98, C++03, and selected features of the C++11 standard
v Full support for OpenMP V3.1
v Partial support for OpenMP V4.0
v AltiVec
v IEEE POSIX 1003.2

Starting from XL C/C++ for Linux, V13.1.3 for little endian distributions, the
compiler conforms to the following language standards and industry specifications:
v C89, C99, and C11 standards
v C++98, C++03, C++11 and selected features of the C++14 standard
v Full support for OpenMP V3.1
v Partial support for OpenMP V4.0
v AltiVec
v IEEE POSIX 1003.2

XL C/C++ for Linux, V16.1.1 conforms to the following language standards and
industry specifications:
v C89, C99, and C11 standards
v C++98, C++03, C++11 and selected features of the C++14 standard
v Full support for OpenMP V3.1
v Full support for OpenMP V4.0
v Full support for OpenMP V4.5
v AltiVec
v IEEE POSIX 1003.2

XL C/C++ for AIX, V16.1 conforms to the following language standards and
industry specifications:
v Clang-based front end that is invoked by the xlclang or xlclang++ invocation

command
– C89, C99, and C11 standards
– C++98, C++03, C++11, and C++14 standards
– AltiVec
– IEEE POSIX 1003.2

v XL-based front end that is invoked by xlc, xlC, or equivalent invocation
commands
– C89, C99, and selected features of the C11 standard

© Copyright IBM Corp. 2018 5

– C++98, C++03, and selected features of the C++11 standard
– Full support for OpenMP V3.1
– Partial support for OpenMP V4.0
– AltiVec
– IEEE POSIX 1003.2

6 IBM XL C/C++ compilers features

Chapter 3. Key features

Offloading computations to the NVIDIA GPUs
The combination of the IBM POWER® processors and the NVIDIA GPUs provides
a platform for heterogeneous high-performance computing that can run several
technical computing workloads efficiently. The computational capability is built on
top of massively parallel and multithreaded cores within the NVIDIA GPUs and
the IBM POWER processors. You can offload parallel operations within
applications, such as data analysis or high-performance computing workloads, to
GPUs.

Programming with OpenMP 4.5 device constructs

Starting from XL C/C++ for Linux, V13.1.5 for little endian distributions, you can
offload compute-intensive parts of an application and associated data to the
NVIDIA GPUs by using the device constructs. For more information, see “OpenMP
support” on page 8.

You must specify the -qoffload option to enable the support for offloading
OpenMP target regions to NVIDIA GPUs. For -qoffload to take effect, you must
also specify the -qsmp option to enable support for OpenMP target regions.

Starting from XL C/C++ for Linux, V13.1.6 for little endian distributions and XL
Fortran for Linux, V15.1.6 for little endian distributions, you can use the -qtgtarch
option to specify the real or virtual GPU architectures where the code can run,
overriding the default GPU architecture. This allows the compiler to take
maximum advantage of the capabilities and machine instructions which are
specific to a GPU architecture, or common to a virtual architecture.

Starting from XL C/C++ for Linux, V13.1.6 for little endian distributions, you can
use the XLSMPOPTS=target={mandatory | default | disabled} environment
variable to control which device to execute target regions on. You can also use the
supported runtime functions, for example, to query the target environment or to
manage device memory.

Using the compiler with NVCC

The NVIDIA CUDA C++ compiler (NVCC) from the NVIDIA CUDA Toolkit
partitions C/C++ source code into host and device portions. Starting from XL
C/C++ for Linux, V13.1.5 for little endian distributions, you can use the compiler
as the host compiler for the POWER processor with NVCC. For more information,
see the NVIDIA CUDA on IBM POWER8: Technical overview, software installation, and
application development downloadable from http://www.redbooks.ibm.com/
redpapers/pdfs/redp5169.pdf.

System prerequisites

To compile and link programs that contain code to be offloaded to the NVIDIA
GPUs with XL C/C++ for Linux, V13.1.5 or higher for little endian distributions,
you must ensure the operating system, hardware, and software requirements are
met. For more information, see the XL C/C++ Installation Guide.

© Copyright IBM Corp. 2018 7

http://www.redbooks.ibm.com/redpapers/pdfs/redp5169.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp5169.pdf

Parallel programming
IBM XL C for AIX, IBM XL C/C++ for AIX, and IBM XL C/C++ for Linux
compilers provide parallel programming through AltiVec/VMX, OpenMP,
automatic parallelization, and autosimdization.

OpenMP support
Starting from V13.1.3, XL C and XL C/C++ compilers include full support for the
OpenMP API V3.1 specification and partial support for the OpenMP API V4.0 and
OpenMP API V4.5 specifications for shared memory parallel programming as
follows:
v OpenMP V4.0 features

– Atomic update, atomic capture, and atomic swap
– The OMP_DISPLAY_ENV environment variable
– The omp_get_proc_bind function (Linux for little endian distributions only)
– The OMP_PLACES environment variable (Linux for little endian distributions

only)
v OpenMP V4.5 functions (Linux for little endian distributions only)

– omp_get_num_places

– omp_get_partition_num_places

– omp_get_partition_place_nums

– omp_get_place_num_procs

– omp_get_place_proc_ids

– omp_get_place_num

v Environment variables that are extended to control the thread affinity policy
(Linux for little endian distributions only)
– OMP_DYNAMIC

– OMP_DISPLAY_ENV

– OMP_PROC_BIND

– OMP_THREAD_LIMIT

Starting from XL C/C++ for Linux, V13.1.5 for little endian distributions, the
compiler provides the following support for the OpenMP API V4.5. Some features
are useful for offloading computations to the NVIDIA GPUs.
v New directives

– omp declare target

– omp distribute

– omp distribute parallel for

– omp target

– omp target data

– omp target enter data

– omp target exit data

– omp target update

– omp teams

– Combined constructs
v New functions

– OpenMP execution environment functions
- omp_get_default_device

8 IBM XL C/C++ compilers features

- omp_get_initial_device

- omp_get_num_devices

- omp_get_num_teams

- omp_get_team_num

- omp_is_initial_device

- omp_set_default_device

– OpenMP device memory functions
- omp_target_alloc

- omp_target_associate_ptr

- omp_target_disassociate_ptr

- omp_target_free

- omp_target_is_present

- omp_target_memcpy

v New environment variables
– OMP_DEFAULT_DEVICE = n

– XLSMPOPTS = TARGET = {MANDATORY | OPTIONAL | DISABLE}

Starting from XL C/C++ for Linux, V13.1.6 for little endian distributions, the
compiler adds the following support for the OpenMP API V4.5.
v New directives

– omp simd

– omp for simd

– omp distribute simd

– omp distribute parallel for simd

– Combined constructs
v Updated directives

– omp ordered

– omp target

– omp target data

– omp target enter data

– omp target exit data

– omp target update

– omp task

v Updated function: omp_target_alloc
v Other enhancements

You can map a lambda functor in OpenMP target regions.

Starting from XL C/C++ for Linux, V13.1.6 for little endian distributions, the
compiler adds the following support for OpenMP Technical Reports.
v Implicit declare target
v Pointer attachment for aggregate members

Starting from XL C/C++ for Linux, V13.1.6 for little endian distributions, the
compiler provides support for OpenMP interoperability with CUDA C/C++ and
CUDA Fortran.
v You can call kernels written in CUDA C/C++ or CUDA Fortran in your

OpenMP programs from the host.

Chapter 3. Key features 9

v You can use the OpenMP use_device_ptr clause to pass OpenMP mapped
variables to CUDA kernels that are launched from the host.

v You can use the OpenMP is_device_ptr clause to access CUDA device attribute
variables or to pass device addresses directly to target regions.

Starting from XL C/C++ for Linux, V16.1, the compiler enhances the support for
OpenMP API V4.5 as follows:
v New directives

– omp cancel

– omp cancellation point

– omp declare simd

– omp taskgroup

– omp taskloop

– omp taskloop simd

v Updated directive: omp task

v New function: omp_get_cancellation
v Other enhancements

You can use the OMP_CANCELLATION environment variable to enable or
disable the cancellation model.

XL C/C++ for Linux, V16.1.1 offers the full support for OpenMP API V4.0 and
OpenMP API V4.5. The following features are added in this release:
v New directive: omp declare reduction

v Updated clause: reduction_clause

In V16.1, XL C/C++ for AIX that is invoked by xlc, xlC, or equivalent invocation
commands offers the same OpenMP support as XL C/C++ for AIX, V13.1.3. XL
C/C++ for AIX that is invoked by the xlclang or xlclang++ invocation command
does not support OpenMP.

OpenMP provides a simple and flexible interface for parallel application
development. OpenMP is comprised of three components: compiler directives,
runtime library functions, and environment variables. Applications that conform to
the OpenMP specification are easily ported to other platforms from desktop to
super computer that support the specification.

OpenMP supports applications that run both as parallel programs (multiple
threads of execution and a full OpenMP support library) and as sequential
programs (directives are ignored and a stub library is linked).

For information about using OpenMP for application parallelization, refer to the
Chapter "Parallelizing your programs", Optimization and Programming Guide for XL
C and C/C++ for AIX and Linux compilers.

For information about OpenMP runtime library functions, see the OpenMP
Application Program Interface specification at www.openmp.org.

Thread-local storage (TLS)
TLS has been included in IBM XL C/C++ for Linux since V8.0. Starting from
V10.1, IBM XL C for AIX and XL C/C++ for AIX support thread-specific variables
through the thread-local storage (TLS) feature.

10 IBM XL C/C++ compilers features

www.openmp.org

In multithreaded applications, it might be useful to maintain thread-specific static
data. Thread-local storage is a GNU extension for this purpose. TLS is adapted by
many vendors and is similar to using the POSIX getthreadspecific and
setthreadspecific functions, but TLS may allow for better performance.

TLS is enabled by the __thread storage class specifier, or the threadprivate
directive in OpenMP. -qtls compiler flag enables recognition of the __thread
storage class specifier. Thread-local variables are static lifetime memory variables
with a separate storage location for each thread. Use of thread-local storage
prevents unintended sharing of static data between threads. A simple example
demonstrating a practical use of thread-local storage is the C error code variable
errno.

The thread-local storage support has been enhanced to include
__attribute__((tls-model("string"))), where string is one of local-exec,
initial-exec, local-dynamic, or global-dynamic.

AltiVec support
IBM XL C/C++ for AIX and IBM XL C/C++ for Linux support the AltiVec
programming model through non-orthogonal language extensions. These language
extensions can be used on operating systems and hardware supporting the VMX
instruction set. The IBM implementation of the AltiVec Programming Interface
specification is an extended syntax that allows type qualifiers and storage class
specifiers to precede the keyword vector (or alternately, __vector) in a declaration.

Although not strictly required by the AltiVec Programming Interface specification,
the vector keyword is recognized in a declaration context only when used as a
type specifier (and when you compile the application with -qaltivec). The other
AltiVec keywords, pixel and bool (for C), are recognized as valid type specifiers
only when used in a vector declaration context. This approach has an important
advantage: it allows your application to continue to use vector and pixel as
variables and function names. To ensure maximum portability, use the underscore
versions of the specifiers vector and pixel (__vector and __pixel) in declarations.
For Altivec data types, the name mangling schema that XL C/C++ for Linux,
V13.1.1 for little endian distributions uses is binary compatible with a new name
mangling schema that is specified in the GNU C compiler with the
-fabi-version=4 option.

VMX support is available on XL C/C++ V12.1 or later AIX compilers where the
target environment is running AIX V5.3, AIX V6.1, AIX 7.1, AIX 7.2, and AIX 7.3 on
architectures that support the Single Instruction Multiple Data (SIMD) instruction
set.

Shared memory parallelization
XL C/C++ supports application development for multiprocessor system
architectures. You can use any of the following methods to develop your
parallelized applications with XL C/C++:
v Directive-based shared memory parallelization (OpenMP, SMP)
v Instructing the compiler to automatically generate shared memory parallelization
v Message passing based shared or distributed memory parallelization (MPI)
v POSIX threads (Pthreads) parallelization
v Low-level UNIX parallelization using fork() and exec()

Chapter 3. Key features 11

The parallel programming facilities are based on the concept of threads. Parallel
programming exploits the advantages of multiprocessor systems, while
maintaining a full binary compatibility with existing uniprocessor systems. This
means that a multithreaded program that works on a uniprocessor system can take
advantage of a multiprocessor system without recompiling. For more information,
see “Parallelizing your programs” in the XL C/C++ Optimization and Programming
Guide.

POWER9 technology exploitation
Starting from XL C/C++ for Linux, V13.1.5 for little endian distributions and XL
C/C++ for AIX, V16.1, the compiler introduces the following support for the
POWER9 technology.
v Compiler options to target the POWER9 architecture

The -mcpu=pwr9 or -mcpu=power9 (-qarch=pwr9) suboption enables the
compiler to generate code that exploits new POWER9 instructions, which
improve the program performance on the POWER9 architecture. With the
-mtune=pwr9 or -mtune=power9 (-qtune=pwr9) suboption, optimizations are
tuned for the POWER9 architecture.

v Built-in functions for the POWER9 architecture
v MASS libraries

The vector library libmassvp9.a and the SIMD library libmass_simdp9.a that
contain functions tuned for the POWER9 architecture.

Optimization capabilities
One of the key strengths of IBM XL C/C++ is optimization. These compilers offer
the benefit of optimization technology that has been evolving at IBM since the late
1980s, combining extensive hardware knowledge with a comprehensive
understanding of compiler technology and what users look for in a compiler when
building end-user applications. The optimizations can decrease execution time and
make your applications run faster, producing code that is highly tuned for
execution on Power Architecture platforms. Improving optimization is a key goal
of the IBM compiler team, and one that will continue to be a major focus with each
iteration of the IBM XL C/C++ compilers.

The optimizer includes five base optimization levels: -O0, -O2, -O3, -O4, and -O5.
These levels allow you to choose from minimal optimization to intense program
analysis that provides benefits even across programming languages. Optimization
analyses range from local basic block to subprogram to file-level to whole-program
analysis. The higher the optimization level, the more intense the program analysis
becomes as increasingly sophisticated optimization techniques are applied to your
code.

At each optimization level, the optimizer performs transformations that result in
performance improvements, while still executing your code the way it was written.
At higher levels, the optimizer can trade numeric precision for execution speed. If
this effect is not desired, you can specify compiler options such as -qstrict to
prevent such trade-offs. You can use other options such as -qsmallstack or
-qcompact to bias optimization decisions in favor of smaller stack space or
program size.

The IBM XL C/C++ compilers do not limit your optimization choices
unnecessarily. All of the optimization capabilities, including those discussed above,
can be combined. You choose the levels and types of optimizations best suited to

12 IBM XL C/C++ compilers features

your application and build constraints, putting ultimate control of how your
application builds and runs firmly in your hands.

For more information on optimization, see the Code Optimization with the IBM XL
Compilers on Power architectures whitepaper at www.ibm.com/support/
docview.wss?uid=swg27005174 and the IBM XL C/C++ Optimization and
Programming Guide.

Decimal floating-point support for XL C/C++
Decimal floating point arithmetic offers greater computational performance and
precision in business and financial applications where numeric data I/O is usually
performed in decimal form. Data conversions from decimal type to binary
floating-point type and back are avoided, as there are inherent rounding errors
accumulated during data conversions.

Table 1. Decimal floating-point compiler options

Options Description

-qdfp | -qnodfp Specifying -qdfp enables compiler support for
decimal floating-point data types and literals.

-qfloat= dfpemulate |
nodfpemulate

Specifying -qfloat=dfpemulate instructs the compiler
to use software emulation when handling decimal
floating-point computations.

-y There are suboptions specific to decimal
floating-point arithmetic for the -y option to control
rounding of constant expressions.

Notes:

v Compiler support for decimal floating-point operations on Linux requires
Advanced Tool Chain 7.0 or higher.

v XL C/C++ for Linux for little endian distributions does not support decimal
floating-point.

v XL C/C++ for AIX, V16.1 that is invoked by xlclang or xlclang++ does not
support decimal floating-point.

Diagnostic listings
The compiler output listing can provide important information to help you
develop and debug your applications more efficiently. Listing information is
organized into optional sections that you can include or omit. For more
information about the applicable compiler options and the listing itself, see
“Compiler messages and listings” in the XL C/C++ Compiler Reference.

Enhanced Unicode and NLS support
As recommended by the C Standard committee, the C compiler extends C99 to add
new data types to support UTF-16 and UTF-32 literals. The data types are u-literals
and U-literals. To enable support for UTF literals in your source code, you must
compile with the option -qutf enabled. The C++ compiler also supports these new
data types for compatibility with C.

Note: The -qutf option is available only on AIX and Linux for big endian
distributions.

Chapter 3. Key features 13

www.ibm.com/support/docview.wss?uid=swg27005174
www.ibm.com/support/docview.wss?uid=swg27005174

IBM is a corporate member of the Unicode Consortium. For more information
about Unicode, see www.unicode.org.

Boost C++ library support
Boost C++ libraries are open source libraries that take you beyond the C++
Standard Library. Boost makes C++ programming more elegant, robust, and
productive. The Boost license grants permission to copy, use, and modify the
software for any commercial or non-commercial use. With the non-restrictive
licensing, these libraries are used directly by many commercial applications. Many
of the libraries are planned for inclusion in the next version of the C++ Standard
Library.

Boost libraries allow you to be more productive through software reuse. The ability
to compile and execute the Boost Libraries properly demonstrates IBM's support of
the latest C++ idioms and paradigms, specifically generic programming and
template metaprogramming.

Boost C++ libraries are coded by the leading C++ experts in the world, many of
whom are long time members of the C++ Standard Committee. They use Boost as
a test bed for cutting edge C++ programming techniques and codify discoveries
and best practices without the long delay that it takes for a library to be formally
accepted into the C++ Standard. However, the Boost community subjects each
submission to rigorous peer review. This free sharing of knowledge, exposes a
submission to a larger audience which helps C++ evolve and grow.

The IBM XL C/C++ compilers have attained a high degree of compatibility with
Boost and continue to support Boost as new releases appear. Each version of the
compiler is fully tested on one version of Boost, usually the latest. The following
table shows the Boost support in each version of the compiler.

Table 2. IBM XL C++ compiler and Boost version supported

IBM XL C++ Compiler Version Boost version supported

16.1(AIX) 1.55.0

16.1.1 (Linux) 1.59.0

16.1 (Linux) 1.59.0

13.1.6 (Linux for little endian distributions
only)

1.59.0

13.1.5 (Linux for little endian distributions
only)

1.59.0

13.1.4 (Linux for little endian distributions
only)

1.59.0

13.1.3 (Linux for little endian distributions
only)

1.59.0

13.1.3 (AIX) 1.55.0

13.1.2 1.55.0

13.1.1 (Linux for little endian distributions
only)

1.55.0

13.1 1.55.0

12.1 1.47.0

11.1 1.40.0

14 IBM XL C/C++ compilers features

www.unicode.org

Patch files are available that modifies the Boost C++ libraries so that they can be
built and used with XL C/C++ applications. The patch or modification file does
not extend or otherwise provide additional functionality to the Boost C++ libraries.
To download the patch file, see:

http://www.ibm.com/support/docview.wss?uid=swg27006911

The above link also provides information on Boost library regression test results.

For more information on portable C++ source libraries from Boost, see:

www.boost.org

IBM Mathematical Acceleration Subsystem (MASS) libraries
IBM XL C/C++ compilers ship the IBM Mathematical Acceleration Subsystem
(MASS) libraries of mathematical intrinsic functions specifically tuned for optimum
performance on the IBM Power architecture. The MASS libraries are thread-safe,
include scalar, SIMD, and vector functions, and offer improved performance over
the equivalent intrinsic functions in the standard math library provided with your
AIX or Linux on POWER. The MASS functions can be used with either Fortran or
C/C++ applications.

A version of the MASS scalar library is provided for each operating system: AIX,
Linux on POWER big endian, and Linux on POWER little endian. Vector and
SIMD versions of the MASS libraries are provided, tuned for POWER7 (AIX and
Linux big endian) processors, POWER8 (AIX, Linux big endian, and Linux little
endian) processors, and POWER9 (AIX and Linux little endian) architecture. These
support programs running on the specific processor or higher.

The MASS SIMD and vector libraries allow you to compute mathematical
functions for multiple inputs with (often significant) performance gains over
repeated calls to a scalar function. SIMD MASS functions input and output a
vector data type whose size matches the size of the supported processor's vector
registers, while vector MASS supports arguments that are vectors of arbitrary
length.

Basic Linear Algebra Subprograms (BLAS)
There are four BLAS high-performance algebraic functions shipped with IBM XL
C/C++ in the libxlopt library. The functions are as follows:
v sgemv (single-precision) and dgemv (double-precision), which compute the

matrix-vector product and sum for a general matrix or its transpose.
v sgemm (single-precision) and dgemm (double-precision), which perform combined

matrix multiplication and addition for general matrices or their transposes.

Because the BLAS routines are written in Fortran, all parameters are passed to
them by reference, and all arrays are stored in column-major order.

Source-code migration and conformance checking
XL C/C++ helps protect your investment in your existing C/C++ source code by
providing compiler invocation commands that instruct the compiler to compile
your application code to a specific language level. You can also use the -qlanglvl
compiler option to specify a given language level, and the compiler will issue

Chapter 3. Key features 15

http://www.ibm.com/support/docview.wss?uid=swg27006911
www.boost.org

warnings, errors, and severe error messages if language or language extension
elements in your program source do not conform to that language level. See
-qlanglvl in the XL C/C++ Compiler Reference for more information.

C++ templates
Templates are an area of the C++ language that provides a great deal of flexibility
for developers. The ISO C++ standard defines the language facilities and features
for templates.

The IBM XL C++ compiler provides several methods to compile templates:
v Simple layout method. This results in code bloat and longer compile time, but it

is easy to use and requires no specific structuring by programmers.
v Automatic instantiation using -qtempinc. This requires user code structuring but

it addresses the long compile time problem inherent in the simple layout
method.

v Automatic instantiation using -qtemplateregistry. This requires no user code
restructuring and addresses both the long compile time and code bloat issues.

The instantiation mechanisms are the external mechanisms that allow C++
implementations to create instantiations correctly. These mechanisms may be
constrained by requirements of the linker and other software building tools.

IBM XL C++ compilers have two queried instantiation mechanisms, -qtempinc and
-qtemplateregistry. One of the differences between -qtempinc and
-qtemplateregistry is that -qtempinc delays the instantiation until link time, and
the -qtemplateregistry does the instantiation in the first compilation unit that uses
it.

-qtempinc and -qtemplateregistry compiler options are mutually exclusive.

Here is how you get the various instantiation models for the XL C++ compiler:

Greedy instantiation
default is -qtmplinst=auto -qnotemplateregistry -qnotempinc or
-qtmplinst=always

Queried instantiation
-qtemplateregistry or -qtempinc (for example -qtmplinst=auto)

Manual instantiation
-qtmplinst=none with explicit instantiations in your code.

Notes:

v XL C/C++ AIX, V16.1 that is invoked by xlclang or xlclang++ and XL C/C++
for Linux for little endian distributions support only the greedy instantiation
model.

v XL C/C++ AIX, V16.1 that is invoked by xlclang or xlclang++ and XL C/C++
for Linux for little endian distributions do not support the -qtempinc,
-qnotemplateregistry, -qtmplinst=auto, or -qtmplinst=always options.

16 IBM XL C/C++ compilers features

Utilization tracking and reporting
On Linux for big endian distributions and AIX, the utilization tracking and
reporting feature is a lightweight and simple mechanism for tracking the compiler
utilization within your organization. It is disabled by default. You can use this
feature to detect whether your organization's use of the compiler exceeds your
compiler license entitlements.

When utilization tracking is enabled, each invocation of the compiler is recorded in
a compiler utilization file. You can run the utilization reporting tool to generate a
report from one or more of these files to get a picture of the overall usage of the
compiler within your organization. The urt command can be used to control how
the report is generated. In particular, the report indicates whether the compiler
usage complies with the number of Concurrent User licenses that you have
purchased.

The utilization tracking and reporting feature is easy to set up and manage, and
utilization tracking does not impact the usage or performance of the compiler.

On Linux for little endian distributions and AIX, you can also enable IBM Software
License Metric (SLM) Tags logging in the compiler so that IBM License Metric Tool
(ILMT) can track compiler license usage.

For detailed information about the utilization tracking and reporting feature, see
the topics about tracking compiler usage in the XL C/C++ Compiler Reference.

Chapter 3. Key features 17

18 IBM XL C/C++ compilers features

Chapter 4. Compatibility and porting

Porting from open source and other platforms
The cross-platform portability of GNU C and GNU C++ has ensured GNU a place
in the open source community. GNU has excelled in educational and compiler
research arenas as a test bed for new language syntax. IBM XL compilers are built
on a platform of reliability, customer service, and cutting-edge optimization. In
recent years, the IBM XL compilers have been evolving to gain some of the
additional flexibility and portability of the GNU compilers, while still retaining the
strengths that have built the IBM XL C/C++ compiler's reputation in the industry.

GNU source compatibility
XL C/C++ for Linux for little endian distributions and XL C/C++ AIX that is
invoked by xlclang or xlclang++ are built with Clang front end and IBM
optimizing back end components. They provide improved GCC compatibility and
language standards support for easier migration and enhanced capability as well
as the IBM optimization technology.

In Linux, the compilers use the GNU C and C++ headers, and the resulting
application is linked with the C and C++ runtime libraries provided by the GNU
compiler shipped with the operating system. IBM ships an implementation of some
header files with the compiler product to override the corresponding GNU header
files. These header files are functionally equivalent to the corresponding GNU
implementation. Other IBM headers are wrappers that include the corresponding
GNU header files.

XL C/C++ supports a subset of the GNU compiler command options to facilitate
porting applications developed with GNU C and GNU C++ compilers. Where
possible, the XL C/C++ compiler maps GNU options to their XL C/C++ compiler
option counterparts before invoking the XL C/C++ compiler. These invocation
commands use a plain text configuration file to control GNU-to-XL C/C++ option
mappings and defaults. You can customize this configuration file to better meet the
needs of any unique compilation requirements you might have. This support is
available when the gxlc or gxlc++ invocation command is used together with select
GNU compiler options on XL C/C++ for AIX that is invoked by xlc, xlC, or
equivalent invocation commands.

In V16.1, XL C/C++ for AIX can be invoked by xlclang or xlclang++, and it
provides much more GCC options and pragmas than previous releases so that you
can migrate your programs from GCC to IBM XL C/C++ for AIX easier.

Starting from V13.1.1, XL C/C++ for Linux for little endian distributions also
provides a greater level of GNU source compatibility. It supports the use of gcc
and g++ compiler options and therefore the gxlc and gxlc++ invocation commands
are not required or included.

© Copyright IBM Corp. 2018 19

GNU binary compatibility
The IBM XL C/C++ for Linux compilers achieve a high degree of binary
compatibility with GNU-built objects, archives, and shared objects. The compiler
achieves this by adhering to the system ABI and calling conventions, and by
closely following the GNU behavior where alignment modifiers like the attributes
aligned and packed are used.

C++ interoperability is somewhat more difficult to achieve due to differing
conventions for name mangling, object model, and exception handling. However,
the GNU C++ compiler, since V3.2, has adopted a common vendor C++ ABI that
defines a way to allow interoperability of C++ object model, name mangling, and
exception handling. This common C++ ABI is supported in the IBM XL C++
compilers. IBM XL C/C++ for Linux has been fully tested with the default GNU
compilers on the supported Linux distribution.

The XL C++ compiler for Linux also has an option to display the class layouts, the
virtual function tables entries as well as all the intermediate object model tables
such as the construction virtual function table, and the virtual function table. These
help you to ensure binary compatibility through verification of internal table
layouts, and significantly enhance the debugging of incompatibility problems.

On AIX, the object model of the Clang-based front end of IBM XL C/C++ for AIX,
V16.1 is based on the XL implementation of the object model defined by the
cxxabi, which the GCC object model also implements. However, objects files
generated by the Clang-based front end of IBM XL C/C++ for AIX is not
interoperable with the object files generated by GCC, which use different C++
standard library and run time, so you cannot mix and match binaries generated by
gcc or g++ and those by xlclang or xlclang++.

Command-line compatibility utilities
When you are porting GNU makefiles to IBM XL C/C++ for Linux, the gxlc and
gxlc++ invocation commands are available to translate a GNU compiler invocation
command into the corresponding XL C/C++ for Linux command where applicable,
and invoke the XL C/C++ for Linux compiler. This facilitates the transition to XL
C/C++ for Linux while minimizing the number of changes to makefiles built with
a GNU compiler.

Note: Starting from V13.1.1, XL C/C++ for Linux for little endian distributions
supports the use of gcc and g++ compiler options and therefore the gxlc and
gxlc++ command-line compatibility utilities are not required or included.

To fully exploit the capabilities of IBM XL C/C++, you should use the XL C/C++
invocation commands and their associated options.

Support for third-party C++ runtime libraries
The IBM XL C++ compiler on AIX can compile C++ applications so that the
application supports only the core language, thus enabling it to link with C++
runtime libraries from third-party vendors. The following archive files enable this
functionality.

Table 3. Core Language libraries

Library name Content

20 IBM XL C/C++ compilers features

Table 3. Core Language libraries (continued)

lib*C*core.a Contains exception handling, RTTI, static initialization, new and delete
operators. Does not contain any of the following libraries: Input/Output,
Localization, STL Containers, Iterators, Algorithms, Numerics, Strings.

libCcore.a The core language version of the C++ runtime library, libC.a.

libC128core.a The core language version of libC128.a.

libhCcore.a The core language version of libhC.a.

Invocation commands have been added to facilitate using these libraries:
v xlc++core
v xlCcore

Equivalent special invocations:
v xlc++core_r, xlc++core_r7, xlc++core128, xlc++core128_r, xlc++core128_r7
v xlCcore_r, xlCcore_r7, xlC128core, xlC128core_r, xlC128core_r7

Explanation of suffixes for special invocations:
v 128-suffixed invocations - All 128-suffixed invocation commands are functionally

similar to their corresponding base compiler invocations. They specify the
-qldbl128 option, which increases the length of long double types in your
program from 64 to 128 bits. They also link with the 128-bit versions of the C
and C++ runtime libraries.

v _r suffixed invocations - All _r suffixed invocations allow for threadsafe
compilation and you can use them to link the programs that use multithreading.
Use these commands if you want to create threaded applications.

The _r7 invocations are provided to help migrate programs based on POSIX Draft
7 to POSIX Draft 10.

Compatibility of redistributable library libxlopt.a
The libxlopt.a library is compatible with XL C/C++ for AIX, V11.1, or later
versions.

You can download and use the latest redistributable library for multiple
applications compiled with XL C/C++ for AIX, V11.1 and later versions, on
supported platforms.

For more information about the redistributable libraries, see “Redistributable
libraries” in the XL C/C++ Compiler Reference.

Chapter 4. Compatibility and porting 21

22 IBM XL C/C++ compilers features

Chapter 5. Tools supporting IBM XL C/C++ compilers

Debugging capabilities
You can instruct IBM XL C/C++ compilers to include debugging information in
your compiled objects. The debugging information can be examined by any
symbolic debugger to help you debug your programs.

For debugging capability on AIX, you have the choice of any symbolic debugger
that supports the AIX XCOFF executable format including dbx, TotalView, DDT,
and IBM Debugger for AIX. On Linux, you can use debuggers including DDT, gdb,
or TotalView. TotalView also supports debugging OpenMP applications.

Additionally, the compilers offer the SNAPSHOT directive and the -qoptdebug and
-qkeepparm options to assist you in debugging optimized code.

Note: The -qoptdebug option is not supported by XL C/C++ for AIX, V16.1 that is
invoked by xlclang/xlclang++ and XL C/C++ Linux for little endian distributions.

Rational PurifyPlus
IBM Rational® PurifyPlus is a dynamic software analysis solution designed to help
developers write faster, more reliable code. It includes the following capabilities
packaged into a single product:

Memory debugging
Pinpoints memory errors that are hard to find, such as uninitialized
memory access, buffer overflow, and improper freeing of memory.

Memory leak detection
Identifies memory blocks that no longer have a valid pointer.

Performance profiling
Highlights application performance bottlenecks and improves application
understanding with a graphical representation of function calls.

Code coverage
Identifies untested code with line-level precision.

Rational PurifyPlus is supported on Windows, Linux, Solaris, and AIX. Rational
PurifyPlus for Linux and UNIX supports AIX, Linux, and Solaris.

Note: Rational PurifyPlus supports XL C/C++ for AIX and XL C/C++ for Linux
for big endian distributions.

For more information, see:

http://www.ibm.com/software/products/en/purifyplus

Rational Team Concert
IBM Rational Team Concert™ is a lean collaborative lifecycle management solution.
It helps companies build better software and products with a complete lean
development environment for teams, which includes complete agile, formal and
hybrid planning and reporting, all on a common platform. Rational Team Concert

© Copyright IBM Corp. 2018 23

http://www.ibm.com/software/products/en/purifyplus

also supports geographically distributed teams with features such as
communication in context, event feeds, integrated chat, and automated traceability,
all beyond simple e-mail. Rational Team Concert can be easily adopted by
component, as a unified solution, or surrounding existing tooling. Operating
systems supported by Rational Team Concert include AIX, IBM i, Linux, Intel,
Microsoft, Windows, and z/OS.

For more information, see:

http://www.ibm.com/software/rational/products/rtc

24 IBM XL C/C++ compilers features

http://www.ibm.com/software/rational/products/rtc/

Chapter 6. Summary

IBM XL C/C++ compilers are stable and flexible, providing industry leading
optimization techniques that can address your compiler needs for everything from
small applications, to large, computationally intensive programs.

The extensive cross-platform availability of the IBM XL C/C++ compilers eases the
porting process between AIX and Linux. Standards conformance and GNU
compatibility improve portability of source code from GNU compilers to IBM XL
compilers. On Linux, the binary compatibility feature allows direct linkage with
objects, shared libraries, and archives built by either the GNU or IBM XL
compilers. This allows you to take advantage of the features offered by both suites
of compiler products.

IBM is also deeply involved in the High Performance Computing effort. Many of
the TOP500 supercomputers are from IBM using IBM XL C/C++ compiler
optimizations. The IBM XL C/C++ compiler team is deeply involved in parallel
computing and supporting different parallel memory models. Other new features
support customer requests and enable middleware applications. With the compiler,
you can develop modern high-performance applications by exploiting the
heterogeneous resources consisting of the IBM POWER processors and the NVIDIA
GPUs.

Optimization through chip-specific instruction generation and tuning,
parallelization, vectorization, interprocedural analysis, and profile-directed
feedback offers an increase in performance without sacrificing stability or
flexibility. Coupled with IBM's excellent service and support, IBM XL C/C++
compilers are robust, versatile, and capable of delivering mission critical
applications.

Starting from V13.1.1, IBM also delivers XL C/C++ compilers for Linux for little
endian distributions. In V16.1, IBM XL C/C++ for AIX provides a new
Clang-based front end that is invoked by the xlclang or xlclang++ invocation
command. Both XL C/C++ for Linux for little endian distributions and IBM XL
C/C++ for AIX invoked by xlclang or xlclang++ leverage the Clang infrastructure
from the open source community for a portion of its compiler front end. Clang is a
component of the LLVM open source compiler and toolchain project and provides
the C and C++ language family front end for LLVM. XL C/C++ combines the
Clang front-end infrastructure with the advanced optimization technology in the
IBM compiler back end. For additional information about Clang, see the LLVM
website at: http://clang.llvm.org.

© Copyright IBM Corp. 2018 25

http://clang.llvm.org

26 IBM XL C/C++ compilers features

Chapter 7. Support information

Documentation
IBM XL C/C++ compiler product documentation is available online. You can
access it from the following library page links:
v IBM XL C for AIX: http://www.ibm.com/support/

docview.wss?uid=swg27036590
v IBM XL C/C++ for AIX: http://www.ibm.com/support/

docview.wss?uid=swg27036618
v IBM XL C/C++ for Linux: http://www.ibm.com/support/

docview.wss?uid=swg27036675
v IBM XL C/C++ for Linux on z Systems: http://www.ibm.com/support/

docview.wss?uid=swg27044043
v IBM z/OS XL C/C++: http://www.ibm.com/support/

docview.wss?uid=swg27036892
v IBM XL C/C++ for z/VM: http://www.ibm.com/support/

docview.wss?uid=swg27037738

The IBM XL C/C++ compilers also include man pages for all utilities and compiler
invocation commands.

An extensive collection of technical material and demos, support information, and
features and benefits of IBM XL C/C++ can be found at the following URL:

https://www.ibm.com/us-en/marketplace/ibm-c-and-c-plus-plus-compiler-family

Premier customer service
The IBM XL C/C++ compilers come with IBM's premier service and support. The
IBM Service and Support organization is made up of a team dedicated to
providing you with responsive platform and cross-platform software support. For
complex or code-related problems, IBM employs specialized service teams with
access to compiler development experts. The vision of IBM Service and Support is
to achieve a level of support excellence that exceeds customer expectations and
differentiates IBM in the marketplace. You will always have access to the right
level of IBM expertise when you need it. More information is available at:

http://www.ibm.com/support/entry/portal/support?brandind=rational

You can also find the latest updates for IBM XL C and XL C/C++ compilers at:

http://www.ibm.com/support/docview.wss?uid=swg21110831

Trial version, Community Edition, and purchasing
IIn addition to the full versions, IBM provides the following product editions:
v Community Edition for IBM XL C/C++ for Linux, V16.1.1, which is a no-charge

and fully functional edition for unlimited production use.
v Trial version for IBM XL C/C++ for AIX, V16.1, which is a no-charge and fully

functional version for an evaluation period of 60 days.

© Copyright IBM Corp. 2018 27

http://www.ibm.com/support/docview.wss?uid=swg27036590
http://www.ibm.com/support/docview.wss?uid=swg27036590
http://www.ibm.com/support/docview.wss?uid=swg27036618
http://www.ibm.com/support/docview.wss?uid=swg27036618
http://www.ibm.com/support/docview.wss?uid=swg27036675
http://www.ibm.com/support/docview.wss?uid=swg27036675
http://www.ibm.com/support/docview.wss?uid=swg27044043
http://www.ibm.com/support/docview.wss?uid=swg27044043
http://www.ibm.com/support/docview.wss?uid=swg27036892
http://www.ibm.com/support/docview.wss?uid=swg27036892
http://www.ibm.com/support/docview.wss?uid=swg27037738
http://www.ibm.com/support/docview.wss?uid=swg27037738
https://www.ibm.com/us-en/marketplace/ibm-c-and-c-plus-plus-compiler-family
http://www.ibm.com/support/entry/portal/support?brandind=rational
http://www.ibm.com/support/docview.wss?uid=swg21110831

The following link contains the XL C/C++ compiler product web pages where you
can find download information about the full version, the Community Edition, and
the trial version if available:

https://www.ibm.com/us-en/marketplace/ibm-c-and-c-plus-plus-compiler-family

Purchasing information of IBM XL C/C++ is also available at the above website.

Contacting IBM
IBM welcomes your comments. You can send them to compinfo@cn.ibm.com.

28 IBM XL C/C++ compilers features

https://www.ibm.com/us-en/marketplace/ibm-c-and-c-plus-plus-compiler-family

Chapter 7. Support information 29

IBM®

Printed in USA

	Chapter 1. Introduction
	Chapter 2. Standards conformance
	Chapter 3. Key features
	Offloading computations to the NVIDIA GPUs
	Parallel programming
	OpenMP support
	Thread-local storage (TLS)
	AltiVec support
	Shared memory parallelization

	POWER9 technology exploitation
	Optimization capabilities
	Decimal floating-point support for XL C/C++
	Diagnostic listings
	Enhanced Unicode and NLS support
	Boost C++ library support
	IBM Mathematical Acceleration Subsystem (MASS) libraries
	Basic Linear Algebra Subprograms (BLAS)
	Source-code migration and conformance checking
	C++ templates
	Utilization tracking and reporting

	Chapter 4. Compatibility and porting
	Porting from open source and other platforms
	GNU source compatibility
	GNU binary compatibility
	Command-line compatibility utilities
	Support for third-party C++ runtime libraries
	Compatibility of redistributable library libxlopt.a

	Chapter 5. Tools supporting IBM XL C/C++ compilers
	Debugging capabilities
	Rational PurifyPlus
	Rational Team Concert

	Chapter 6. Summary
	Chapter 7. Support information
	Documentation
	Premier customer service
	Trial version, Community Edition, and purchasing
	Contacting IBM

