
About the ClearCase Type Manager

Overview, design and custom implementation

Maréchal Laurent

December 1, 2011

Page 1 of 39 “ClearCase Support Whitepaper”

ABOUT THE CLEARCASE TYPE MANAGER..1

INTRODUCTION..3

OVERVIEW OF THE TYPE MANAGER...4

CLEARCASE ELEMENT TYPE...4
THE MAGIC FILE...4
CLEARCASE TYPE MANAGER..5

TYPE MANAGER COMPONENT AND DEFINITION..8

THE MAP FILE..8
THE TYPE MANAGER..11

Interface...11
Interface options...12
Operation return value...12
Operation description and arguments..13

create_element...14
create_branch...15
create_version & create_version64..16
construct_version...17
delete_branches_versions...18
compare..20
xcompare..21
merge..22
xmerge..23
context_merge..24
annotate..25
get_cont_info...26

CUSTOMIZING THE TYPE MANAGER...27

IDENTIFY THE NEED...27
Element type creation and use...27
Change existing type manager...29
Full type manager change..31

PRACTICAL EXAMPLE...35

UTF16 HANDLING (DIFF/MERGE TOOL WITH BEYOND COMPARE)..35
Goal..35
Analyze..35
Procedure...35

NOTES AND WARNING...38

REFERENCES...39

Page 2 of 39 “ClearCase Support Whitepaper”

Introduction
Creating a new type manager and or modifying an existing type manager is not supported by IBM
Rational Technical Support. This document is provided for information only. Using this information to
modify or create your own type manager is not supported by IBM Rational due to the nature of what a
type manager does. The type manager acts on the container of your VOB; this means on your data. If
a custom type manager is corrupting your data, Rational can not and will not be held liable for such
corruption. To create or modify a type manager means you do so at your own risk.

There is information in the Reference Guide and Administrator’s Guide on how to set up a custom type
manager under UNIX® and Linux®, but there is no other information on what parameters they use or
how to set them up. This leads to a few issues on what is supported or not supported. The following
article will attempt to clarify the current position of IBM Rational Technical Support on the subject as
well as to answer the more common questions received.

What will be primarily discussed in this article are the element types and type managers. Both will be
explained, as well as instructions provided on how to set up a type manager. All of the following
information is based on the ClearCase version 8.0.0.0 running on Microsoft® Windows®. Users
running under a UNIX or Linux can still refer to this article; however, some minor modification will be
required. This still applies to previous versions of ClearCase, however, version 8.0 specific features
will, of course, not be available.

Please review carefully the “Notes and warning” section at the end of this document.

Page 3 of 39 “ClearCase Support Whitepaper”

Overview of the type manager

ClearCase element type
All elements in a ClearCase VOB have an element type associated with them. This type lets ClearCase
know how to handle the different operations (such as creating a new version, or reading a specific
version).
The following is example output for the syntax shown in the first line below:

>cleartool describe -long catalog.bin
version "catalog.bin@@\main\1"
created 08-Mar-05.16:10:47 by Marechal Laurent (HOST1)

 Element Protection:
 User : IBM \nlxxxx : r--
 Group: IBM \yyyy : r--
 Other: : r--
 element type: compressed_file
predecessor version: \main\0

Element types can be created by any user. They are primarily used to assign a customized type to
specific files for example, c_source to all .c or .cpp file). This allows particular ClearCase commands
to be run against these element types (such as a cleartool find restricted by element type).
Creation of custom element types is supported and even required sometimes (for example, the no-
merge type for UCM in ClearCase version before v2003.06.00).

The magic file
The magic file (that is, default.magic) is used to match new element creation with the desired
element type. This file is used at element creation (mkelem) time. Several rules are analyzed one after
each other in order to determine the right element type to use for the newly created file. If no rules
match, then the last one will be used. Rules can be based on filename, extension, content (printable) or
magic number.

An extract of the .magic file would be:

program compressed_file : -name "*.[eE][xX][eE]" | -name
"*.bin" ;

This would activate for a file of:
- extension .bin
- extension .EXE
- extension .exe
- extension <any uppercase or lowercase combination of exe>

This could also be simplified to:

program compressed_file : -name "*.exe" | -name "*.bin" ;

When a new file is added to source control, if the extension is equal to .exe or .bin then ClearCase will
try to use the element type program and if it does not exist, it will default to compressed_file.
Remember that this file is only used at creation time (mkelem, add to source control) and
not at any new version or branch creation. Review the cc.magic page in the reference guide
(cleartool man cc.magic) for more information.

Page 4 of 39 “ClearCase Support Whitepaper”

ClearCase type manager
Each element type is bound to a type manager. There are several predefined element types provided by
default (number depends on the ClearCase release) like file, text_file, compressed_file. A
full list of the existing types can be retrieved with a single cleartool command. On ClearCase
8.0.0.0 it returns the following:

>cleartool lstype -s -kind eltype
binary_delta_file
compressed_file
compressed_text_file
directory
file
file_system_object
html
ms_word
rose
rosert
text_file
utf16be_file
utf16le_file
utf32be_file
utf32le_file
utf8_file
xde
xml

Each of these element types has an associated type manager. This can be seen when you describe any
of these element types.

>cleartool describe -long eltype:compressed_file
element type "compressed_file"
 created 08-Mar-05.14:26:49 by Marechal Laurent (HOST1)
 "Predefined element type used to represent a file in
compressed format."
 owner: IBM \nlxxx
 group: IBM \yyyy
 scope: this VOB (ordinary type)
 type manager: z_whole_copy
 supertype: file
 meta-type of element: file element

The last three lines contain the type manager information.. These line define the type manager used for
this element type (z_whole_copy) and the supertype used (file). For more information review the
ClearCase reference guide on the topic of mkeltype (cleartool man mkeltype) for more information.

The following default type managers are provided with ClearCase 8.0.0.0 (refer to the IBM Rational
ClearCase Information Center under the topic of type_manager for further details):

Manager Function

whole_copy Stores any data. Stores a whole copy of each version in a separate data container file.

z_whole_copy Stores any data. Stores each version in a separate, compressed data container file using the

Page 5 of 39 “ClearCase Support Whitepaper”

http://www.ibm.com/support/docview.wss?&uid=swg27010158
http://www.ibm.com/support/docview.wss?&uid=swg27010158

Manager Function

ccgzip compression program. (ccgzip is a utility that implements IETF RFC 1951 + 1952
compression using zlib source code).
Note that compressed files generally take more time to check in (because they must be
compressed) and to reconstruct when first accessed (first cleartext fetch).

text_whole_copy Stores text files only. The storage mechanism is the same as that for z_whole_copy.
Different versions of a file can be stored in different character encodings. The compare and
merge functionality is similar to that of the text_file_delta type manager.

text_file_delta Stores text files only (including those with multibyte text characters). Stores all versions in a
single structured data container file. (On UNIX and Linux, similar to an SCCS s. file or an
RCS ,v file.) Uses incremental file differences to reconstruct individual versions on the fly.

z_text_file_delta Stores text files only. Stores all versions in a single structured data container file, in
compressed format using both the ccgzip compression program and deltas.

binary_delta Stores any data. Stores each branch's versions in a separate, structured compressed data
container file using ccgzip. Uses incremental file differences to reconstruct individual
versions on the fly. Version deltas are determined by comparing files on a per-byte basis.

_html Stores HTML source. Stores information and reconstructs versions in the same way as the
text_file_delta manager from which it is derived. Has its own compare, xcompare, merge
and xmerge methods.

_html2 Same as the _html manager, except that _html2 is based on the binary_delta manager.

_ms_word Stores Microsoft® Word documents. Stores information and reconstructs versions in the
same way as the z_whole_copy manager from which it is derived. On Windows, has its own
xcompare and xmerge methods.

_rftdef
_rftmap
_rftvp

Stores XDE® Tester artifacts. Stores information and reconstructs versions in the same way
as the binary_delta manager from which it is derived.

_rose Stores IBM Rose artifacts. Stores information and reconstructs versions in the same way as
the text_file_delta manager from which it is derived. On Windows, has its owncompare,
xcompare, merge, and xmerge methods.

_rose2 Same as the _rose manager, except that _rose2 is based on the binary_delta manager.

_rosert Stores IBM Rose RealTime artifacts. Stores information and reconstructs versions in the
same way as the binary_delta manager from which it is derived. On Windows, has its own
compare, xcompare, merge, and xmerge methods.

utf8_file_delta Stores 8-bit Unicode Transformation Format source. The compare/merge functionality is
similar to that of the text_file_delta type manager.

utf16be_file_delta Stores 16-bit big-endian Unicode Transformation Format source. The compare/merge
functionality is similar to that of the text_file_delta type manager.

utf16le_file_delta Stores 16-bit little-endian Unicode Transformation Format source. The compare/merge
functionality is similar to that of the text_file_delta type manager.

utf32be_file_delta Stores 32-bit big-endian Unicode Transformation Format source. The compare/merge
functionality is similar to that of the text_file_delta type manager.

utf32le_file_delta Stores 32-bit little-endian Unicode Transformation Format source. The compare/merge
functionality is similar to that of the text_file_delta type manager.

Page 6 of 39 “ClearCase Support Whitepaper”

Manager Function

_xde Stores IBM XDE artifacts. Stores information and reconstructs versions in the same way as
the text_file_delta manager from which it is derived. On Windows, has its own merge,
xmerge, compare, and xcompare methods.

_xde2 Same as the _xde manager, except that _xde2 is based on the binary_delta manager and it
provides a context_merge method.

_xml Stores XML source. Stores information and reconstructs versions in the same way as the
text_file_delta manager from which it is derived. On Windows, has its own compare,
xcompare, merge, and xmerge methods.

_xml2 Same as the _xml manager, except that _xml2 is based on the binary_delta manager.

directory Not involved in storing or retrieving directory versions, which reside in the VOB database,
not in a source storage pool. This type manager compares and merges versions of the same
directory element.

Each type manager is meant to be used with a specific kind of file ‘content’ (text, binary…).
Not all files can be handled the same way. File operations (such as merge and diff) as well as file
storage (delta vs. whole copy) will depend on the file format. Because of this there are several type
managers created by default. The *_delta type manager only stores the data changed between each
version. The z_* are storing the information in a compressed mode. Other types are created to support
different tools such as IBM/Rational Rose/XDE and Microsoft MS-Word.

The type manager is called for several operations (creating element, creating branch,
creating version, fetching specific version…) and is spawned by a ClearCase
process. The type manager process will run from the location where it is called.

• For operations that create/delete/modify source containers
(cleartool/GUI/multitool-import mkelem, mkbranch, checkin,
checkout-w/auto-mkbranch, rmver, rmbranch, rmelem), the type manager runs
as a child process of cleartool/GUI/multitool-import.

• For operations that create cleartext containers (reading version data via the MVFS for a
dynamic view, via cleartool update, checkout, mkbranch-w/co for a snapshot view), the type
manager runs as a child process of the view server. Multitool-export also reads version
data and the type manager runs as a child process of multitool-export.

This also means that if you introduce a type manager, then all your clients and servers must have it
installed. If you use MultiSite, then this also applies for all other sites.

Page 7 of 39 “ClearCase Support Whitepaper”

Type manager component and definition
The type manager should not be mistaken for or confused with the element type. These are two
different things. The different components that make up a customized type solution include the
following:

• A new element type (defines which type manager and supertype would be used for all
elements of this type.)

• An entry in the magic file (to bind future element creation to the new type.)
• An entry in the map file (to match the operation [merge or diff etc…] with the type manager

to use.)
• A program that will be used for handling all of the possible operations for the type manager

(merge, diff etc…).

The element type and magic file will not be described in this article as they are referenced clearly in the
different ClearCase manuals.

• Element Type
• Magic File

The map file
Under Windows, the map file is located in the \lib\mgrs directory of your ClearCase installation (by
default C:\Program Files\IBM\RationalSDLC\ClearCase\lib\mgrs). This file contains the mapping
between the different type managers, the operations and the tool to use.
The path to which the type managers reside does not matter to the map file, so long as the path resolves
to the type manager application. “Paths" that are acceptable in the map file are:

• UNC paths
• Absolute paths
• Relative (to the location of the map file) paths
• Registry keys that contain the path to the executable to run

 The following is an extract from the map file under Windows:

text_file_delta construct_version
..\..\bin\tfdmgr.exe
text_file_delta create_branch
..\..\bin\tfdmgr.exe
text_file_delta create_element
..\..\bin\tfdmgr.exe
text_file_delta create_version
..\..\bin\tfdmgr.exe
text_file_delta delete_branches_versions
..\..\bin\tfdmgr.exe
text_file_delta compare
..\..\bin\cleardiff.exe
text_file_delta xcompare
..\..\bin\cleardiffmrg.exe
text_file_delta merge
..\..\bin\cleardiff.exe
text_file_delta xmerge
..\..\bin\cleardiffmrg.exe

Page 8 of 39 “ClearCase Support Whitepaper”

http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m0/index.jsp?topic=/com.ibm.rational.clearcase.cc_ref.doc/topics/cc.magic.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m0/index.jsp?topic=/com.ibm.rational.clearcase.cc_ref.doc/topics/ct_mkeltype.htm

text_file_delta annotate
..\..\bin\tfdmgr.exe
text_file_delta get_cont_info
..\..\bin\tfdmgr.exe

This is based on the text_file_delta type manager. For each operation required, a specific tool
can be called. The same one can also be used, but in this case, it is up to the tool to make the difference
in the operation requested (via the argument).

The following operations are available:

construct_version Used to request the construction of a cleartext for a given
version.

create_branch Used to create a new branch.
create_element Used to create a new element.
create_version Used to create a new version <2Gb.
create_version64 Used to create a new version >2Gb.
delete_branches_versions Used to delete a version/branch
compare Used when comparing from the command line.
xcompare Used when comparing with the GUI.
merge Used when merging from the command line.
xmerge Used when merging from the GUI.
annotate Used with the annotate command.
get_cont_info Used to get information on the container.

Here is an example of when a user checks in a new version of type "text_file"
(create_version):

• ClearCase checks the checkin request is valid:
o The file is actually in checkout mode
o The user has all permission to perform the operation

• ClearCase checks the map file for the operation and the element type to determine the type
manager to use.

• ClearCase gathers the information to pass to the type manager.
• ClearCase creates a new container in the VOB storage.
• ClearCase then invokes the text_file_delta type manager to construct and store the new

version, passing all the required arguments.
• The text_file_delta manager saves all the data from the predecessor version's container

in the new container and incorporates the data for the new version, then returns a status
indicating the new container should be used and the old should be discarded.

• ClearCase removes the write permissions from the new container, updates the VOB database
to record the checkin and to change all versions that used the old container to use the new
container, then it deletes the old container. If the type manager or the VOB update fails,
ClearCase instead deletes the new container, leaves the database unchanged, and fails the
checkin.

Under UNIX or Linux, this map file does not exist. It is replaced by a directory (one for each type
manager) containing a set of symlink (one for each operation) pointing to the corresponding program
acting as the type manager program. The main directory is /usr/atria/lib/mgrs and will contain an entry
for each of the defined type managers, as an example below:

drwxr-xr-x 512 binary_delta
drwxr-xr-x 512 directory

Page 9 of 39 “ClearCase Support Whitepaper”

drwxr-xr-x 512 _html
drwxr-xr-x 512 _html2
-r--r--r-- 41277 mgr_info.h
-r-xr-xr-x 3484 mgr_info.sh
drwxr-xr-x 512 _ms_word
drwxr-xr-x 512 _rftdef
lrwxrwxrwx 7 _rftmap -> _rftdef
lrwxrwxrwx 7 _rftvp -> _rftdef
drwxr-xr-x 512 _rose
drwxr-xr-x 512 _rose2
lrwxrwxrwx 6 _rosert -> _rose2
drwxr-xr-x 512 text_file_delta
drwxr-xr-x 512 whole_copy
drwxr-xr-x 512 _xde
drwxr-xr-x 512 _xde2
drwxr-xr-x 512 _xml
drwxr-xr-x 512 _xml2
drwxr-xr-x 512 _xtools
drwxr-xr-x 512 _xtools2
drwxr-xr-x 512 z_text_file_delta
drwxr-xr-x 512 z_whole_copy

Some of the directory entries are, in fact, linked to other ones. This is because they share the same
program to handle the type manager calls.

For each one, there will be an entry matching the type manager call and will point to a program.

lrwxrwxrwx 6 annotate -> tfdmgr
lrwxrwxrwx 22 compare -> ../../../bin/cleardiff
lrwxrwxrwx 6 construct_all_versions -> tfdmgr
lrwxrwxrwx 6 construct_version -> tfdmgr
lrwxrwxrwx 6 create_branch -> tfdmgr
lrwxrwxrwx 6 create_element -> tfdmgr
lrwxrwxrwx 6 create_version -> tfdmgr
lrwxrwxrwx 6 delete_branches_versions -> tfdmgr
lrwxrwxrwx 6 get_cont_info -> tfdmgr
lrwxrwxrwx 22 merge -> ../../../bin/cleardiff
-r-xr-xr-x 33K tfdmgr
-r-xr-xr-x 33K tfdmgr.old
lrwxrwxrwx 23 xcompare -> ../../../bin/xcleardiff
lrwxrwxrwx 23 xmerge -> ../../../bin/xcleardiff

Additionally, under Microsoft Windows, we also use the registry. For every operation that
involves map file access, the Windows registry is tested first. Specific keys are required to
exist and these follow the same naming and order as the physical files.

The root for the registry definition is:
[HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\Type

Managers\<NAME>]
If we find the key in the registry, then the map file is not used. This is important to remember
as putting different definitions for the same type manager in both will result in the map file
being ignored.

Page 10 of 39 “ClearCase Support Whitepaper”

Direct modifications to this registry entry are not supported as it may be removed from the
product in a future update and could cause unexpected results. The normal supported way is
to use the map file.

The type manager
As seen before, the type manager is responsible for handling the request and performs several
operations.. A single executable or script can implement all or only part of the possible operation. The
map file will be used to determine which executable or script will be called. The parameter provided to
the type manager will include the operation so it can handle more than one in the same code. The term
”type manager” refers to the set of executables, scripts... that will allow the full set of operations.

The type manager manipulates cleartext container but also source container. Only the type manager
knows the format of these files and is responsible for handling the versions. ClearCase relies on the
type manager for access to the repository of the code. This also means that if there is any issue in the
type manager, there are no workarounds or rollbacks to fix the data (except the last backup you have
done).

Custom type managers are not supported by IBM Rational as they are responsible for all the data
handling in your VOB. In case of defect or malfunction of your type manager, you are exposed to
irreversible data loss and do so at your own risk.

A primary reference moving forward will be the file \lib\mgrs\mgr_info.h from your ClearCase
installation. This file contains all information on a type manager implementation.

Interface
The type manager program can be used either to perform one specific operation or several different
operations. When ClearCase calls this type manager, it includes the operation in the argument list and
then must check the argument and execute the corresponding call. As long as the interface is respected,
the type manager can be implemented in any language possible. Under Windows, only the .exe and
.com file can be used. It is not possible to use any non-executable file on Windows at this time (bat, pl,
wsh, vbs…). It is also not possible to use parameters or switches to the executable to run commands at
this time. A change request has been submitted to allow any kind of executable to be used under
Windows; the reference number for tracking purposes is RATLC01005985.

Arguments are passed as pure ASCII string and only an exit value is returned.

Operations that can be included in the type manager are the following (as seen in the argument list
provided when the type manager is run):

create_element compare
create_branch xcompare
create_version merge
construct_version xmerge
delete_branches_versions context_merge
get_cont_info annotate
create_version64

These operations are matching the ones from the map file as seen earlier, in Section 3.1.

Page 11 of 39 “ClearCase Support Whitepaper”

Interface options
A few options can also be passed to the type manager. These options are coming from ClearCase and
not from the users. The type manager must know how to handle them. Here are the actual possible
options that the type manager could receive:

-abort -fname -serial
-all -hstack -tiny
-base -blank_ignore -versions
-branches -out -vstack
-columns -parallele -windows
-diff -qall -qntrivial
-directory -q

Most of them are identical to the standard cleartool command and an explanation can be found in the
reference manual for the corresponding equivalent.

Operation return value
After execution of an operation, an exit status must be returned. The status value will depend on the
result and on the operation. The status will be returned to ClearCase which will then accept or cancel
the execution of the command. The following is based on the \lib\mgrs\mgr_info.h file.

Ret.Val. Constant from mgr_info.h Description
0 MGR_OK Value indicating operation succeeded.
1 MGR_FAILED Value indicating operation failed. Any unexpected

return value is also treated as a failure.
2 MGR_FAILED_NO_PRED_CONT Return value for create operation, indicating failure

as previous container does not exist. Common case
if container was renamed before manager could
open it.

101 MGR_STORE_KEEP_NEITHER Return value for delete operation, indicating that
both the old container and the new container should
be discarded.

102 MGR_STORE_KEEP_JUST_OLD Return value for delete operation, indicating that the
old container should be used and the new container
not needed.

103 MGR_STORE_KEEP_JUST_NEW Return value for delete operation, indicating that the
old container should be discarded and the new
container should be used.

104 MGR_STORE_KEEP_BOTH Return value for create operation, indicating that
both the old and new containers should be kept. A
new container has been created to store the
requested update. Any versions that used the old
container should continue to use the old container.
The new version should use the new container.

(1<<7){?} MGR_STORE_FILES_ARE_IDENT Special value to OR into a MGR_STORE_* status
to indicate that the version stored has the same data
as its predecessor.

101 MGR_CONSTRUCT_USE_SRC_CONTAINER Return value for construct operation, indicating that
the source container can be used as the cleartext for
the version.

102 MGR_CONSTRUCT_USE_NEW_FILE Return value for construct operation, indicating that
cleartext has been constructed at the supplied
pathname.

101 MGR_DELETE_KEEP_NEITHER Return value for create operation, indicating that the
old container, if any, can be discarded and the new
container is not needed.

Page 12 of 39 “ClearCase Support Whitepaper”

102 MGR_DELETE_KEEP_JUST_OLD Return value for create operation, indicating that the
old container should be saved, and the new
container is not needed. Any versions that used the
old container should continue to use the old
container.

103 MGR_DELETE_KEEP_JUST_NEW Return value for create operation, indicating that the
old container should be discarded and the new
container should be used. The new container has all
the information in the old container plus the
requested update. All versions that used the old
container should now use the new container. The
old container can then be discarded.

101 MGR_INFO_NO_INFO Return value for 'get cont info' operation, indicating
that the manager does not maintain version
identification information. Such a manager's
containers can only hold one version data image
(though multiple versions that have identical data;
for example, version 0 of a branch and the branch's
branch point- can share the container.

0 MGR_COMPARE_NODIFFS Return value for compare operation, indicating that
the comparison was successful and there were no
differences.

1 MGR_COMPARE_DIFF_OR_ERROR Return value for compare operation, indicating that
the comparison was not successful or that the
comparison was successful but there were
differences.

0 MGR_MERGE_OK Return value for merge/xmerge operation, indicating
that the merger was completed successfully.

1 MGR_MERGE_ABORT Return value for merge/xmerge operation, indicating
that the merger was aborted due to conflicts.

From the table, some return values are identical for several constants. This is because you cannot
execute multiple operations at the same time and so the returned value can be reused. As an example
both MGR_COMPARE_NODIFFS, MGR_MERGE_OK and MGR_OK have a return value of 0. The two last one
are identical (returned when the operation is successful for a merge) the first one is the return value of
the compare operation. As you cannot perform both a merge and compare at the same time, the value is
identical but does not mean the same thing (It is reused.).

Operation description and arguments
When the type manager is called, it receives a set of arguments from ClearCase that respect the
following rules:

• The first one will be the operation type.
• All following ones will be operation arguments.
• Number of argument can be fixed or variable depending on the operation requested.
• All arguments are represented as ASCII strings.

The following is a description of all operations and arguments. This is the same list as found in the
\lib\mgrs\mgr_info.h files.

• The description explains what the operation should do, this is what has to be written and
handled by the type manager.

• The command line is listing what information the type manager can expect from ClearCase.
• The argument list explains the command line options.
• The result is what the type manager should return as exit value.

Page 13 of 39 “ClearCase Support Whitepaper”

create_element
Description

• Record the creation of a new element, its main branch and initial version.
• Store data for an empty initial version of the element (that is, /main/0).

Command line
create_element create_time element_oid initial_branch_oid
zero_ver_oid new_container_pname

Arguments

create_time Date/time when element created, in seconds, since January 1,
1970, formatted as hex string.

element_oid Object id of future element
initial_branch_oid Object id of future initial branch of element
zero_ver_oid Object id of future version 0 on initial branch.
new_container_pname Pathname of container in which to store initial empty version

Result
MGR_STORE_KEEP_JUST_NEW Version was successfully stored in new container
MGR_FAILED Manager operation failed

Page 14 of 39 “ClearCase Support Whitepaper”

create_branch
Description

• Record the creation of a new branch and version zero on that branch.
• The data for version zero is identical to the data for the predecessor version.
• Add the new branch and version zero to source container, or reuse the predecessor's

container.
• See the construct_version operation description for requirements regarding exact

preservation of version data.

Command line
create_branch create_time new_branch_oid zero_ver_oid
new_container_pname pred_branch_oid pred_ver_oid pred_ver_num
pred_container_pname

Arguments
create_time Date/time when branch created, in seconds, since January 1,

1970, formatted as hex string
new_branch_oid Object id of future branch
zero_ver_oid Object id of future version 0 on new branch
new_container_pname Pathname of container in which to add new branch and

version 0
pred_branch_oid Object id of branch of predecessor version
pred_ver_oid Object id of predecessor version from which new branch

sprouts
pred_ver_num Version number of predecessor version, formatted as decimal

string
pred_container_pname Pathname of predecessor version's storage container

Result
MGR_STORE_KEEP_BOTH Both the old and new containers should be kept. The new

version should use the new container. Old versions
should continue to use the old container.

MGR_STORE_KEEP_JUST_NEW The old container should be discarded and the new
container should be used for this version and any other
versions that used the old container.

MGR_STORE_KEEP_JUST_OLD The old container should be saved but the new container
is not needed. The new version should use the old
container.

MGR_FAILED Manager operation failed.

Page 15 of 39 “ClearCase Support Whitepaper”

create_version & create_version64
Description

• Store the data for a new version.
• Store the version's data in the supplied new
container, combining it with the predecessor's data if desired (such as for incremental
deltas).

Warning: In some situations create_version is called with a branch_oid of a branch
of which the manager has not yet been informed. In this case the manager should be prepared
to create that branch as needed. Furthermore, when this occurs it is legal for the new version to
be version 0 on the branch (new_ver_num == 0).

See the construct_version operation description for requirements regarding exact
preservation of version data.

Note: The create_version64 must be able to deal with files larger than 2GB.

Command line
create_version create_time branch_oid new_ver_oid

new_ver_num new_container_pname pred_branch_oid pred_ver_oid
pred_ver_num pred_container_pname data_pname

Arguments
create_time Date/time when version created, in seconds, since January 1,

1970, formatted as hex string
branch_oid Object id of branch where new version will be added
new_ver_oid Object id of future version
new_ver_num Version number of new version, formatted as decimal string
new_container_pname Pathname of container in which to store new version's data
pred_branch_oid Object id of branch of predecessor version
pred_ver_oid Object id of predecessor version
pred_ver_num Version number of predecessor version, formatted as decimal

string
pred_container_pname Pathname of predecessor version's storage container
data_pname Pathname of data for new version

Result
MGR_STORE_KEEP_BOTH Both the old and new containers should be kept. The

new version should use the new container. Old
versions should continue to use the old container.

MGR_STORE_KEEP_JUST_NEW The old container should be discarded and the new
container should be used for this version and any other
versions that used the old container

MGR_STORE_FILES_ARE_IDENT Value to OR into above result if data for version stored
is identical to data of predecessor version (optional).

MGR_FAILED Manager operation failed.

Page 16 of 39 “ClearCase Support Whitepaper”

construct_version
Description

• Fetch the data for a version.
• Extract the data for the requested version into the supplied pathname, or return a

value indicating that the source container can be used as the cleartext data for the
version.

Note: The type manager must preserve the version data provided to it on the
create_version operation (and the implicit version data for a create_branch operation)
such that the construct_version operation yields exactly the same version data that was
originally provided.

Command line
construct_version source_container_pname data_pname version_oid

Arguments
source_container_pname Pathname of source container for the version.
data_pname Pathname in which to store extracted data for version.
version_oid Object id of version to fetch.

Result
MGR_CONSTRUCT_USE_SRC_CONTAINER Use source container as data instead of

data_pname.
MGR_CONSTRUCT_USE_NEW_FILE Data was successfully fetched to data_pname.

MGR_FAILED Manager operation failed.

Page 17 of 39 “ClearCase Support Whitepaper”

delete_branches_versions
Description

• Delete one or more branches and/or versions all from the same container.
• Delete each branch and its corresponding version zero, and delete each version.
• Store the resulting data in the supplied source container, or if no data remains after

the deletions, return a result indicating that the old container can be discarded and the
new container is not needed.

Managers are REQUIRED to actually delete versions that have no living descendents (that is,
to prune the version tree). This is to ensure that the manager will behave correctly following
certain recovery actions. Specifically, under those conditions, the manager can later be
presented with a create_version operation for a version number that the manager had
previously been told to create and delete. The version's oid and data may be different than in
the original instance.

This apparent ”reuse” of the version number can only occur for deleted versions with no living
descendents. Managers are allowed to merely tag delete versions that do not meet the ”no
living descendents” criteria. Such managers are REQUIRED to meet the initial requirement
following *any* delete_branches_versions operation. That is, previously tag-deleted
versions that no longer have any living descendents must be deleted (regardless of whether or
not the current delete_branches_versions operation affects any of those versions).

The manager must be prepared to be asked to delete branch and/or version oids that it may not
know about. It must silently accept these (the manager will meet the requirement that the
branch / version does not exist in the container).

Command line
delete_branches_versions old_container_pname
new_container_pname [-branches branch_oid ...] [-versions
ver_oid ...]

Arguments
old_container_pname Pathname of source container that currently contains the

data for the branches/versions
new_container_pname Pathname of new source container in which to store data

without the deleted branches/versions
-branches
branch_oid ...

List of object ids of branches to delete

-versions ver_oid ... List of object ids of versions (including zero) to delete

Result
MGR_DELETE_KEEP_JUST_NEW The old container should be discarded and the new

container should be used for all remaining versions
that used the old container before the deletion

MGR_DELETE_KEEP_NEITHER The old container can be discarded and the new
container is not needed

Page 18 of 39 “ClearCase Support Whitepaper”

MGR_DELETE_KEEP_JUST_OLD The old container should be used for all remaining
versions, and the new container is not needed.
(This result is not recommended. It should be used
only for managers who cannot delete the data from the
container. The branches/versions will be deleted from
the database without ever reclaiming the space in the
source container.)

MGR_FAILED Manager operation failed

Page 19 of 39 “ClearCase Support Whitepaper”

compare
Description

• Compare the data for two or more versions.
• For more information, see cleartool diff.

Command line
compare [-tiny | -window] [-serial | -diff | -parallel] [-
columns n]

[-directory] [-blank_ignore] [pass-through-options]
[-fname string ...] pname pname ...

Arguments
[-tiny |
-window] [-
columns n]

See corresponding cleartool diff options

-serial See cleartool diff -serial_format
-diff See cleartool diff -diff_format
-parallel Requests side-by-side display of differences (such as cleartool diff

default).
-directory Indicates that contributors are VOB directory versions represented

by encoded files in format described under "Directory Diff/Merge"
above

-blank_ignore See cleartool diff -blank_ignore
pass-through-
options

Options specific to this type manager

-fname
string ...

String to display for an input pathname; this option can be repeated
up to the number of input pathnames supplied the compare program
should use string[n] as a label for pname[n], if string[n] was
supplied

pname pname ... List of pathnames of cleartext data of versions to compare

Result
MGR_COMPARE_NODIFFS The comparison was successful and there were no

differences
MGR_COMPARE_DIFF_OR_ERROR The comparison was not successful, or the comparison

was successful but there were differences

Page 20 of 39 “ClearCase Support Whitepaper”

xcompare
Description

• Compare the data for two or more versions, using a graphical display.
• For more information, see cleartool xdiff.

Command line
xcompare [-hstack | -vstack] [-tiny] [-directory] [-
blank_ignore]

[pass-through-options] [-fname string ...] pname
pname ...

Arguments
[-hstack |
-vstack] [-
tiny]

See corresponding xcleartool xdiff option

-directory Indicates that contributors are VOB directory versions represented by
encoded files in format described under "Directory Diff/Merge"
above

-blank_ignore See cleartool diff -blank_ignore
pass-through-
options

Options specific to this type manager

-fname
string ...

String to display for an input pathname; this option can be repeated
up to the number of input pathnames supplied; the xcompare program
should use string[n] as a label for pname[n], if string[n] was supplied

pname pname ... List of pathnames of cleartext data of versions to compare

Result
MGR_COMPARE_NODIFFS The comparison was successful and there were no

differences.
MGR_COMPARE_DIFF_OR_ERROR The comparison was not successful, or the comparison

was successful but there were differences.

Page 21 of 39 “ClearCase Support Whitepaper”

merge
Description

• Merge the data for two or more versions.
• For more information, see cleartool merge.

When selective query is used (-query switch) it is assumed that the last pname listed is the to-
version, unless -to is used, in which case the pname given with -to is the to-version.

Command line
merge [-qall | -abort] [-base base_pname] -out output_pname

[-tiny | -window] [-serial | -diff | -parallel] [-columns
n]
[-directory] [pass-through-options]
[-fname string ...] pname pname ...

Arguments
[-qall | -abort]
[-tiny | -window]
[-columns n]

See corresponding cleartool merge options

-serial See cleartool merge -serial_format
-diff See cleartool merge -diff_format
-parallel Requests side-by-side display of differences (e.g. cleartool

merge default)
-base base_pname Pathname of cleartext data for base version, if any
-out output_pname Pathname where cleartext data for result of merge should be

stored
-directory Indicates that contributors are VOB directory versions

represented by encoded files in format described under
"Directory Diff/Merge" above

pass-through-
options

Options specific to this type manager

-fname string ... String to display for an input pathname; this option can be
repeated up to the number of input pathnames supplied,
including the base_pname (which is considered to be the first
pathname); the merge program should use string[n] as a label
for pname[n], if string[n] was supplied

pname pname ... List of pathnames of cleartext data of versions contributing to
merge

Result
MGR_MERGE_OK The merger was completed successfully.
MGR_MERGE_ABORT The merger was aborted due to conflicts.
MGR_FAILED Manager operation failed.

Page 22 of 39 “ClearCase Support Whitepaper”

xmerge
Description

• Merge the data for two or more versions, using a graphical display.
• For more information, see cleartool xmerge.

Command line
merge [-qall | -abort] [-base base_pname] -out output_pname

[-hstack | -vstack] [-tiny] [-directory] [pass-through-
options]
[-fname string ...] pname pname ...

Arguments
[-qall | -abort]
[-hstack |
-vstack] [-tiny]

See corresponding cleartool xmerge options

-base base_pname Pathname of cleartext data for base version, if any
-out output_pname Pathname where cleartext data for result of merge should be

stored
-directory Indicates that contributors are VOB directory versions

represented by encoded files in format described under
"Directory Diff/Merge" above

pass-through-
options

Options specific to this type manager

-fname string ... String to display for an input pathname; this option can be
repeated up to the number of input pathnames supplied,
including the base_pname (which is considered to be the first
pathname); the xmerge program should use string[n] as a label
for pname[n], if string[n] was supplied

pname pname ... List of pathnames of cleartext data for versions contributing to
merge

Result
MGR_MERGE_OK The merger was completed successfully.
MGR_MERGE_ABORT The merger was aborted due to conflicts.
MGR_FAILED Manager operation failed.

Page 23 of 39 “ClearCase Support Whitepaper”

context_merge
Description

• Post-process the group of files that were merged or xmerged by this type manager in
the current "merge session".

• This method is optional, and only a subset of ClearCase merge operations will invoke
it. Currently this is limited to UCM deliver and rebase.

If ClearCase intends to invoke this method following a merge or xmerge, the environment
variable CCASE_WILL_CONTEXT_MERGE will be set during those methods.

Command line
context_merge [-abort] pname

Arguments
-
abort

Cancels the command instead of engaging in a user interaction; a merge takes place
only if it is completely automatic.

pname Pathname of a temporary file that itself contains a list of pathnames, each of which
was successfully processed by the [x]merge method of this type manager (or would
have been had it not been a trivial merge), and remains checked out. One filename is
listed per line.
Since each pathname will refer to a checked-out file in the view's file area (in the
MVFS for dynamic views and in the copy area for snapshot views), ClearCase
commands such as properties or history may be invoked using that pathname.

Result
MGR_MERGE_OK The merger was completed successfully.
MGR_MERGE_ABORT The merger was aborted due to conflicts.
MGR_FAILED Manager operation failed.

Page 24 of 39 “ClearCase Support Whitepaper”

annotate
Description

• Fetch the annotated data for a version.
• Extract the annotated data for the requested version from the indicated source

container into the supplied output pathname.
• For more information, see cleartool annotate.

Default: Fetch annotated data for requested version only and indicate that all lines are INCLUDED.

Command line
annotate [-all] source_container_pname output_pname version_oid

Arguments
-all Fetch annotated data for all versions. Indicate for each line

whether it is still INCLUDED in the requested version,
was included in an ancestor of the version but was
DELETED, or is UNRELATED to the version.

source_container_pname Pathname of source container for the version.
output_pname Pathname in which to store annotated data for version.
version_oid Object id of version.

If not -all, fetch and annotate data for this version.
If -all, fetch data for all versions of element and annotate
them with respect to this version.

Result
MGR_OK Data was successfully fetched to output_pname.
MGR_FAILED Manager operation failed.

Output file format:
Each line of the output file has the format:

code version-oid[,deleted-version-oid] line-of-data
where:

code Indicates the relationship of this line to the version fetched (a
mgr_annotate_code_t value)

version-oid Object id of the version that first included the line of data

deleted-
version-oid

If line has been deleted, object id of the version that deleted the data

line-of-data Line of data

Page 25 of 39 “ClearCase Support Whitepaper”

get_cont_info
Description

• Fetch the information describing the contents of a container.
• Extract the version, etc information from the source container into the supplied

output pathname.

Command line
get_cont_info source_container_pname output_pname

Arguments
source_container_pname Pathname of source container for the version
output_pname Pathname in which to store container description

information

Result
MGR_OK The manager maintains version identification information and that

data was successfully fetched to output_pname. The output file
must have at least one MGR_INFO_VERSION record in it.

MGR_FAILED Manager operation failed.
MGR_INFO_NO_INF
O

The manager does not maintain version identify information. This
response is only legal for container-per-version style managers (also
known as 'whole copy' style managers).
Such managers can still legally share a container between a branch's
predecessor version (its sprout point) and the branch's branch-
version-0 version.
 (Note: a result of MGR_OK with an empty output file is considered
an error).

Output file format:

• An unordered set of version, branch and element identification records, with a single
information record per line.

• Only the version info records are mandatory. See the previous descriptions for the information
record definitions:

MGR_INFO_VERSION
MGR_INFO_BRANCH
MGR_INFO_ELEMENT

Page 26 of 39 “ClearCase Support Whitepaper”

Customizing the Type Manager
As seen until now, the type manger is more than just a few modifications or settings. A full type
manager involves coding and lot of testing. The type manager is a critical part of the ClearCase
application as it is the one responsible for your data. It is always a better idea to use the provided type
manager instead of creating a new one. The ones provided with ClearCase are supported and tested.

Identify the need
The first question would be, “What is really needed?”

• Do you just want to identify and handle a set of identical elements?
• Do you need to replace or change only one specific part or one single operation?
• Do you need to handle a very specific file format that none of the existing type managers can?

Element type creation and use
This is the more simple solution. This can be used if you want to “see” a set of file with a different type
and if the format can be handled by an existing provided type manager.
An example would be a set of files in a VOB, some are relating to C source code, others are
documentation or design notes. What if one day you need to find all the files that are related to design
and they are not all present in a single place? One solution is to assign them an attribute or to assign
them one element type. Just define a new element type and assign it to the desired element.

If you want to automate the type assignment to a newly created element, you will need to modify the
magic file. Remember that the magic file is local to each client. This means all modification must be
done on ALL clients of your site, and if you use MultiSite this must also be done on all replicated sites.

The following example defines an element type named ‘design_file’ and assigns it to all desired
files. The only requirement is that all files must use the same supertype (so all will be text files or all
binary files, but not a mix of them).

First a new element type needs to be created:

cleartool> mkeltype -supertype text_file –nc design_file
Created element type "design_file".

cleartool> describe -long eltype:design_file
element type "design_file"
 created 11-Mar-05.13:48:50 by Marechal Laurent (HOST1)
 owner: IBM \nlxxxx
 group: IBM \yyyy
 scope: this VOB (ordinary type)
 type manager: text_file_delta (inherited from type
"text_file")
 supertype: text_file
 meta-type of element: file element

This creates a new type called ‘design_file’, it will use the same type manager as the
text_file one and will have the same limitation (no binary char, no line greater than 8000 char).

For existing elements, the current element type needs to be changed in this manner:

>cleartool chtype design_file catalog.dsg

Page 27 of 39 “ClearCase Support Whitepaper”

Change version manager and reconstruct all versions for
"catalog.dsg"? [no] yes
Changed type of element "catalog.dsg" to "design_file".

>cleartool describe -long catalog.dsg
version "catalog.dsg@@\main\1"
 created 08-Mar-05.16:10:47 by Marechal Laurent (HOST1)
 Element Protection:
 User : IBM \nlxxxx : r--
 Group: IBM \yyyy : r--
 Other: : r--
 element type: design_file
predecessor version: \main\0

For new element, you can either create the element as usual and then assign the new type, or use the
magic file from ClearCase in order to use your type at each element creation.

To use the magic file, you will need to edit and change the file on ALL clients and the server. If this is
not done, then the element will be added to source control but not with your customized type.
The following line needs to be added at the beginning of the file (after the ‘core’ line):

design_file text_file : -name "*.[dD][sS][gG]";

After adding this line, element creation will get the desired type:

>cleartool mkelem -nc reviewed.dsg
Created element "reviewed.dsg" (type "design_file").
Checked out "reviewed.dsg" from version "\main\0".

When done, you can use the new type in all ClearCase commands where query can be used:

>cleartool find . -all -elem (eltype(design_file)) -print
\TypeManagerWP\catalog.dsg@@
\TypeManagerWP\reviewed.dsg@@

>cleartool find . -elem (eltype(design_file)) -ver
attype(REVIEW)
 -exec "cleartool describe -fmt \"%n %[REVIEW]a \n \"
%CLEARCASE_XPN%"
.\catalog.dsg@@\main\1 (REVIEW="NO")
.\publish.dsg@@\main\1 (REVIEW="YES")
.\reviewed.dsg@@\main\GRAM\1 (REVIEW="IN PROGRESS")

>cleartool> find . -elem (eltype(design_file)) -ver
'{REVIEW=="YES"}'
 -print
.\publish.dsg@@\main\1

>cleartool> find . -elem (eltype(design_file)) -ver
'{REVIEW=="YES"}'
 -exec 'cleartool mklabel -nc REVIEWED "%CLEARCASE_XPN%"'
Created label "REVIEWED" on ".\publish.dsg" version "\main\1".

If the VOB holding this new element is replicated using MultiSite, you must perform
the same step on all sites for all replica of this VOB.

Page 28 of 39 “ClearCase Support Whitepaper”

Change existing type manager
You would change your existing type manager if you want to keep most of the normal operations
(checkin/checkout) but want to change only one (such as merge) with another executable. This can be
done by modifying the map file and by adding a wrapper to the tool to present the argument in the right
order. Note that the executable that will be used to replace the provided ClearCase type manager
MUST comply with the ClearCase type manager argument list. If not, do not expect it to work. You
will have to order the argument and result to let ClearCase think it is a valid type manager. You will
also have to update the map file and copy the executable on ALL machines (client and server) and on
all sites where the VOB is replicated. This, of course, is not supported. Do not change the mapping of
an existing element type. Always create a new element type if you need to change an operation. If not,
some ClearCase operations relying on the provided official type manager will fail.

The following is a quick example of how to change a type manager in order to diff a Microsoft Excel
file. Note that this example is not complete and was not tested in all situations. It also only performs the
DIFF operation and not the merge one.

The following example uses WDD.exe. This diff tool is part of the Softinterface, Inc, product (for more
information see http://www.softinterface.com). It is possible to use WDD.exe as compare/diff tools for
Excel files.

The following versions were used:
WDD.exe version 2.36
ClearCase version 2003.06.00 (Fri Apr 18 13:06:18 2003)

1. Install WDD and copy the WDD.exe application to the ClearCase \bin directory.

2. Create an Excel file in a dynamic view (for testing purpose)

3. Create several different versions of this file

4. Test the WDD compare. A manual compare with WDD is working; however the parameter
must be passed in a certain order that will NOT be the one of the type manager by default.
The following command works for comparing two versions:

wdd.exe /M spread.xls /S spread.xls@@\main\1 /L
compare.log

Note that you have to specify both versions. The type manager used is the one responsible for
handling the correct set of parameters (mainly the file/path name as well as against which one
you compare as specified in this document). The IBM Rational compare tool understands the
switch -previous and so is able to get the previous version alone. WDD does not
accomplish this and you are required to pass the other version yourself. The version must be
passed in an extended pathname syntax. This means it will only work in dynamic views.
Another way would be to add a wrapper that would handle the different case and get from the
VOB the two versions in a temp directory and run the diff on these two files.

5. When the manual compare is working and you have identified and fixed the parameters, you
will have to update the type manager tools. The following has been added to the map file:

_ms_excel_file construct_version ..\..\bin\zmgr.exe
_ms_excel_file create_branch ..\..\bin\zmgr.exe

Page 29 of 39 “ClearCase Support Whitepaper”

_ms_excel_file create_element ..\..\bin\zmgr.exe
_ms_excel_file create_version ..\..\bin\zmgr.exe
_ms_excel_file delete_branches_versions
..\..\bin\zmgr.exe
_ms_excel_file compare ..\..\bin\wdd.exe
_ms_excel_file xcompare ..\..\bin\wdd.exe
_ms_excel_file merge ..\..\bin\zmgr.exe
_ms_excel_file xmerge ..\..\bin\zmgr.exe
_ms_excel_file get_cont_info ..\..\bin\zmgr.exe

This instructs the file type ms_excel to use wdd.exe for comparing file for both GUI and
command line compare.

6. Create a new element type for use with it:

cleartool mkeltype -nc -supertype file -manager
_ms_excel_file _ms_excel_file
Created element type "_ms_excel_file".

cleartool describe -long eltype:_ms_excel_file
element type "_ms_excel_file"
created 11-Aug-03.13:02:38 by lmarecha@host1
owner: RATIONAL\lmarecha
group: RATIONAL\ccuser
scope: this VOB (ordinary type)
type manager: _ms_excel_file
supertype: file
meta-type of element: file element

7. Change the existing file type to the new element:

cleartool chtype _ms_excel_file spread.xls
Change version manager and reconstruct all versions for
"spread.xls"? [no] yes
Changed type of element "spread.xls" to "_ms_excel_file”.

8. Comparing the file using 'compare with previous version' while the file is
checked-in result in an error. WDD is started but fails as the file is read-only. This is not an
issue with ClearCase but with WDD.exe that tries to open the file in write when it just has to
read it. Just ignore the error and the compare will work.

9. Comparing files using 'compare with previous version' while the file is checked-
out will succeed.

10. Comparing from the version tree between two different versions (even not the one selected by
the view) is also working.
Example: View is selecting version 4. Click on version 3, right-click to get the context menu,
select compare/with another version. Click on version 2. WDD is started with the correct
version to compare, and no error is reported.

11. In order to use that on different machines you need to perform the following steps on each
machine:

• Install WDD
• Update the map file
• Change the element type to use the new type

Page 30 of 39 “ClearCase Support Whitepaper”

• Set the new element to use the new type by changing the magic file, as desired

Note 1: The log file is not generated. You cannot pass personal parameters to WDD. The two filenames
are passed from ClearCase to the type manger. If you want to pass any personal parameters you will
need to create a wrapper around WDD that will add them.

Note 2: The parameters are passed to the type manager; you cannot change them or personalize them if
you use the default type manager. The only way would be to create a brand new type manager, or to
create a wrapper to reorder them.

Full type manager change
This is the same as changing an existing type manager, but in this case you are changing the whole type
manager to handle a specific file format. It will be necessary to be able to handle all of the common
type manager operations. This is the more difficult implementation. You will have to create an element
type, update the map file and write the whole type manager that must comply with all operations,
arguments, exit values, calls.

It also will be necessary to update the map file and copy the executable on ALL machines (client and
server) and on all sites where the VOB is replicated.

This dummy type manager below is just to show a simple example. It is not supported. It does not
perform any action , just outputs to the screen the arguments it got when called; it should be safe to use
on a TEST machine.

The full type manager is set up the same way as when you change an existing one. The additional step
is that YOU have to write the full handling of all operations. This can be done at one time (all operation
in one single file) or split across several files. You can also only implement a specific operation and
keep using the other one from the element type supertype. This is common if you just want to replace
one operation.

Here is the dummy type manager code written in C (Microsoft Visual Studio® .NET with wizard for
console project).

// TM_Dump.cpp : Defines the entry point for the console
application.
// Microsoft Visual C++ 2005 (Express) Marechal Laurent
IBM/Rational

#include <stdafx.h>
#include <string.h>
#include <stdlib.h>
#include "C:\Program
Files\Rational\ClearCase\lib\mgrs\mgr_info.h"

#define SHOWARG {for(i=0;i<argc;i++){printf("argc %i:
%s\n",i,argv[i]);}}

int _tmain(int argc, char* argv[])
{
int i;

Page 31 of 39 “ClearCase Support Whitepaper”

if (!strcmp(argv[1],MGR_OP_COMPARE))
{

SHOWARG
exit(MGR_FAILED);

}
if (!strcmp(argv[1],MGR_OP_CREATE_ELEMENT))
{

SHOWARG
exit(MGR_FAILED);

}
if (!strcmp(argv[1],MGR_OP_CREATE_VERSION))
{

SHOWARG
exit(MGR_FAILED);

}
if (!strcmp(argv[1],MGR_OP_CREATE_VERSION64))

{
SHOWARG
exit(MGR_FAILED);

}
if (!strcmp(argv[1],MGR_OP_CREATE_BRANCH))
{

SHOWARG
exit(MGR_FAILED);

}
if (!strcmp(argv[1],MGR_OP_CONSTRUCT_VERSION))
{

SHOWARG
exit(MGR_FAILED);

}
if (!strcmp(argv[1],MGR_OP_XMERGE))
{

SHOWARG
exit(MGR_FAILED);

}
if (!strcmp(argv[1],MGR_OP_DELETE_BRANCHES_VERSIONS))
{

SHOWARG
exit(MGR_FAILED);

}
if (!strcmp(argv[1],MGR_OP_CONTEXT_MERGE))
{

SHOWARG
exit(MGR_FAILED);

}
if (!strcmp(argv[1],MGR_OP_GET_CONT_INFO))
{

SHOWARG
exit(MGR_FAILED);

}
if (!strcmp(argv[1],MGR_OP_ANNOTATE))
{

SHOWARG
exit(MGR_FAILED);

}
if (!strcmp(argv[1],MGR_OP_XCOMPARE))

Page 32 of 39 “ClearCase Support Whitepaper”

{
SHOWARG
exit(MGR_FAILED);

}
if (!strcmp(argv[1],MGR_OP_MERGE))
{

SHOWARG
exit(MGR_FAILED);

}

return MGR_FAILED;
}

Note: The code includes the skeleton to all operations that could be handled. Refer to the previous
section or the mgr_info.h for more information. For each ”operation”, you must show the current
arguments received when called, and exit with FAILED status.

Compile it to an executable.
Then copy the executable to the lib\mgrs directory of your ClearCase installation.

Edit the map file to add:

_custom construct_version ..\..\bin\zmgr.exe
_custom create_branch ..\..\bin\zmgr.exe
_custom create_element ..\..\bin\zmgr.exe
_custom create_version ..\..\bin\zmgr.exe
_custom delete_branches_versions
..\..\bin\zmgr.exe
_custom compare
..\..\bin\cleardiff.exe
_custom xcompare
..\..\bin\worddiffmrg.exe
_custom merge
..\..\bin\cleardiff.exe
_custom xmerge
..\..\bin\worddiffmrg.exe
_custom get_cont_info ..\..\bin\zmgr.exe

Create the element type in the VOB
cleartool mkeltype -nc -supertype file -manager _custom _custom

Replace the compare line in the map file with the custom one for the desired operation
_custom compare .\TM_dump.exe

Change the element type to the new one
cleartool chtype _custom <file>

Test it
cleartool diff -pre <file>

If installed smoothly, it will only output the parameters and do nothing to the data (the last two errors
are normal):

Page 33 of 39 “ClearCase Support Whitepaper”

>cleartool diff -pred toto.txt
argc 0 : compare
argc 1 : M:\General_view\TypeManagerWP\toto.txt@@\main\1
argc 2 : toto.txt

>cleartool mkelem –nc -eltype _custom newfile.dta
argc 0 : create_element
argc 1 : 42382a31
argc 2 : d88ee7aa.7f414a6b.9d52.86:3b:bc:02:46:d0
argc 3 : 6b5b1b94.addd4824.a689.e3:5d:b9:17:37:60
argc 4 : e836f039.987344bc.8fa1.bb:c7:e8:dd:c2:2a
argc 5 :
C:\CCSHARE\VOB\TypeManagerWP.vbs\s\sdft\1a\34\tmp_4724.1
cleartool: Error: Unexpected value (0) returned by type manager
"_custom"
cleartool: Error: Unable to create element "newfile.dta".

Page 34 of 39 “ClearCase Support Whitepaper”

Practical example

UTF16 handling (diff/merge tool with Beyond Compare)

Goal
UTF16 files (Unicode) actually are not supported by ClearCase 7.0.0.0 out-of-the-box for diff/merge.
This kind of file can be put under source control and used, but there are no ways to diff/merge them
with the provided tool. The graphical diff and merge functions need to be replaced as do the command
line ones.

Analyze
We will only see how to replace the GUI tools, replacing the command line ones would be equivalent
as long as you find a command line tool to perform the same operations (merge, compare operations).
As we only need to replace the graphical functions, we only need to redirect the xcompare and xmerge
to the new tool. All others can use the ClearCase originals ones.

Procedure
This will be very near the Excel example. This is done with the ClearCase 7.0.0.0-IFIX02, Beyond
Compare V2.2.7 and Windows XP SP2.

1- Install the Beyond Compare tools.

2- Create a file with several versions (or use a test file) to test.

3- Test the compare operation manually.
BC2.exe /noedit /readonly /fv /silent <file1> <file2>

Note that you have to specify both versions. The type manager used is the one responsible for handling
the correct set of parameters (mainly the file/path name as well as against which one you compare as
specified in this document).

4- When the manual compare is working and you have identified and fixed the parameters, you will
have to update the type manager tools. The following as been added to the map file in order to create a
new element type for this purpose:

_bc_file construct_version ..\..\bin\zmgr.exe
_bc_file create_branch ..\..\bin\zmgr.exe
_bc_file create_element ..\..\bin\zmgr.exe
_bc_file create_version ..\..\bin\zmgr.exe
_bc_file delete_branches_versions ..\..\bin\zmgr.exe
_bc_file compare ..\..\bin\cleardiff.exe
_bc_file xcompare ..\..\..\..\Beyond Compare 2\BC2.exe
_bc_file merge ..\..\bin\cleardiff.exe
_bc_file xmerge ..\..\..\..\Beyond Compare 2\BC2.exe
_bc_file get_cont_info ..\..\bin\zmgr.exe

This instructs the file type _bc_file to use BC2.exe for comparing and merging file for GUI only.
Command line operation will still be handled by ClearCase.

Page 35 of 39 “ClearCase Support Whitepaper”

5- Create a new element type for use with it:

>cleartool mkeltype -nc -supertype file -manager _bc_file
_bc_file
Created element type "_bc_file".

>cleartool describe -long eltype:_bc_file
element type "_bc_file"
 created 2006-12-05T17:14:06+01 by jdoe.grp@host2
 owner: DOM1\jdoe
 group: DOM1\grp
 scope: this VOB (ordinary type)
 type manager: _bc_file
 supertype: file
 meta-type of element: file element

6- Change the existing file type to the new element:

>cleartool chtype _bc_file toto.txt
Change version manager and reconstruct all versions for
"toto.txt"? [no] y
Changed type of element "toto.txt" to "_bc_file".

7- Try the compare operation from the command line first:

cleartool diff -graphical toto.txt@@\main\3 toto.txt@@\main\2

This should start-up the Beyond Compare GUI with your two files.

8- Try the compare operation from the version tree, by using ‘compare with other…’; it should launch
the GUI as well.

If nothing happens, make sure to try from the command line; more information is returned and can help
to find the root cause (as these errors are not logged).

Example:
>cleartool diff -graphical toto.txt@@\main\3 toto.txt@@\main\2
cleartool: Error: Operation "xcompare" unavailable for manager
"_bc_file"
 (Operation pathname was: "C:\Program
Files\Rational\ClearCase\lib\mgrs\"C:\Program Files\Beyond
Compare 2\BC2.exe"")

9- If you need some specific options or need to reorder the parameters, then you have an issue. The
map file cannot handle options, only a pathname. This means that you cannot define a call like:

_bc_file xcompare ..\..\..\..\Beyond Compare 2\BC2.exe
/readonly /fv /noedit /silent

There are two solutions for this:
- Write your own type manager that will handle the options and arguments
- Use a wrapper to add what is needed

In this example, the wrapper is chosen. Because the Windows edition of ClearCase can only use

Page 36 of 39 “ClearCase Support Whitepaper”

executables (.exe, .com) as target for the type manager, you would need a wrapper in .exe form to
reorder and handle the parameters. You can either write your own, or use the third-party tool from
Scooter Software (the owner of Beyond Compare).

You can get it from their website http://www.scootersoftware.com/support.php?c=kb_vcs.php
• Download their cleardiffbc.zip archive and extract it. Make sure to read the

readme.txt file.
• Copy ClearDiffBc.exe into the bin directory of the ClearCase installation.
• Update your map file with the cleardeiffbc.exe target for the desired operations

_bc_file xcompare ..\..\bin\cleardiffBC.exe

10- In order to use the new diff/merge feature on different machines you need to perform the following
steps on each of them:

- Install Beyond Compare and the cleardiffbc.exe
- Update the map file and magic file

If you have an existing element, the element type must be changed to use the new type.

Page 37 of 39 “ClearCase Support Whitepaper”

http://www.scootersoftware.com/support.php?c=kb_vcs.php

Notes and warning
• All examples provided here are for instruction only and should not be used in production

unless they are well tested. Any modification to the product is subject to the support license.
• Custom written scripts and type managers are NOT supported by IBM Rational.
• It is not possible on Windows platforms to use anything other than .exe or .com as a target for

the type manager. Change request (RFE) RATLC01005985 has been submitted to allow the
use of another type.

• When using external tools, you are subject to their limitations (that is, some tool are not able
to diff/merge more than two files at the same time.)

Page 38 of 39 “ClearCase Support Whitepaper”

References
The following were used in references or as other sources of information:

• IBM Rational ClearCase Information Center

• IBM Rational Support Knowledge Base (technotes)
o About type managers and size limitations
o About _xml2, _html2, and _rose2 type managers
o About the ClearCase Magic file
o Changing the XML Diff/Merge Type Manager
o Changing unused element types in a replicated VOB
o Changing used element types in a replicated VOB
o Installed type manager does not support operation "get_cont_info"
o Error comparing files containing lines over 8000 bytes
o Operation construct_version unavailable for type manager
o File too large error checking in a text file
o About XML and the Windows 1252 encoding scheme
o How file types are determined when creating a new element
o New Merge Type Copy feature with ClearCase version 7
o Handling binary files in ClearCase

• <ATRIAHOME>\lib\mgrs\map
• <ATRIAHOME>\lib\mgrs\mgr_info.h
• http://www.scootersoftware.com/support.php?c=kb_vcs.php

Page 39 of 39 “ClearCase Support Whitepaper”

http://www.scootersoftware.com/support.php?c=kb_vcs.php
http://www.ibm.com/support/docview.wss?rs=984&uid=swg21123371
http://www.ibm.com/support/docview.wss?rs=984&uid=swg21240740
http://www.ibm.com/support/docview.wss?rs=984&uid=swg21118099
http://www.ibm.com/support/docview.wss?rs=984&uid=swg21150092
http://www.ibm.com/support/docview.wss?rs=984&uid=swg21146566
http://www.ibm.com/support/docview.wss?rs=984&uid=swg21251029
http://www.ibm.com/support/docview.wss?rs=984&uid=swg21182075
http://www.ibm.com/support/docview.wss?rs=984&uid=swg21257396
http://www.ibm.com/support/docview.wss?rs=984&uid=swg21257979
http://www.ibm.com/support/docview.wss?rs=984&uid=swg21148740
http://www.ibm.com/support/docview.wss?rs=984&uid=swg21256807
http://www.ibm.com/support/docview.wss?rs=984&uid=swg21122471
http://www.ibm.com/support/docview.wss?rs=984&uid=swg21127954
http://www.ibm.com/support/docview.wss?rs=984&uid=swg21127322
http://www.ibm.com/support/docview.wss?&uid=swg27010158

	About the ClearCase Type Manager
	Introduction
	Overview of the type manager
	ClearCase element type
	The magic file
	ClearCase type manager

	Type manager component and definition
	The map file
	The type manager
	Interface
	Interface options
	Operation return value
	Operation description and arguments
	create_element
	create_branch
	create_version & create_version64
	construct_version
	delete_branches_versions
	compare
	xcompare
	merge
	xmerge
	context_merge
	annotate
	get_cont_info

	Customizing the Type Manager
	Identify the need
	Element type creation and use
	Change existing type manager
	Full type manager change

	Practical example
	UTF16 handling (diff/merge tool with Beyond Compare)
	Goal
	Analyze
	Procedure

	Notes and warning
	References

