
IBM Software Group

®

WebSphere® Support Technical Exchange

Understanding ClassLoaders
WebSphere 5.1, 6.0 and 6.1
Speaker: Paul Van Norman

IBM Software Group

WebSphere® Support Technical Exchange 2

Agenda

Classloader overview

Classloader delegation mode & policies

Shared Libraries

Class reloading

Common Exceptions & Causes

IBM Software Group

WebSphere® Support Technical Exchange 3

ClassLoaders – Theory of operation
Java classloader perform three major operations

Load Java class files

Load resource files
Locate native code shared libraries (.dll,.so)

Java classloaders are an unit of isolation
com.ibm.MyClass loaded by ClassLoader 1 is not equal to com.ibm.MyClass loaded
by ClassLoader 2.

A ClassCastException will occur if you try to cast the same type loaded by different
classloaders

Code reloading can occur at a classloader level
To “reload” a class, you must loose all references to any class and objects of a class

loaded by a particular classloader, then that classloader can be garbage collected.
Individual classes cannot be reloaded (exception: JDK 1.4 jvms allow this in debug
mode.

IBM Software Group

WebSphere® Support Technical Exchange 4

Java ClassLoader Overview

sun.misc.Launcher$AppClassLoader
java.class.path

CLASSPATH

sun.misc.Launcher$ExtClassLoader

java.ext.dirs

<JAVA_HOME>/lib/ext

Implemented by NATIVE code
Classloader = null

<JAVA_HOME>/lib

Default Delegation mode:

Parent First

IBM Software Group

WebSphere® Support Technical Exchange 5

JVM Classloaders
Bootstrap classloader

Used to load the jar files in <JAVA_HOME>/lib plus extensions specified via
–Xbootclasspath
getClassLoader() on a class loaded by the bootstrap classloader will return null since
implemented in native code
Typically used to load java.* package classes

Extensions classloader implemented by sun.misc.Launcher$ExtClassLoader
Used to load extensions to the JVM runtime usually loaded from
<JAVA_HOME>/lib/ext but also includes directories specified by the system property
java.ext.dirs
Used to load security packages, etc.

CLASSPATH classloader implemented by sun.misc.Launcher$AppClassLoader
Used to load from the directories and jar files specified by the CLASSPATH environment
variable or –classpath command line argument
WebSphere sets following as CLASSPATH
Classpath = d:\Program Files\IBM\WebSphere61\AppServer\profiles\AppSrv01/properties;
d:/Program Files/IBM/WebSphere61/AppServer/properties;
d:/Program Files/IBM/WebSphere61/AppServer/lib/startup.jar;
d:/Program Files/IBM/WebSphere61/AppServer/lib/bootstrap.jar;
d:/Program Files/IBM/WebSphere61/AppServer/lib/j2ee.jar;
d:/Program Files/IBM/WebSphere61/AppServer/lib/lmproxy.jar;
d:/Program Files/IBM/WebSphere61/AppServer/lib/urlprotocols.jar;
d:/Program Files/IBM/WebSphere61/AppServer/deploytool/itp/batchboot.jar;
d:/Program Files/IBM/WebSphere61/AppServer/deploytool/itp/batch2.jar;
d:/Program Files/IBM/WebSphere61/AppServer/java/lib/tools.jar

IBM Software Group

WebSphere® Support Technical Exchange 6

WebSphere 5.1 & 6.0 Runtime ClassLoader Overview

<JAVA_HOME>\lib
<WAS_PROFILE_HOME>\classes
<WAS_HOME>\classes
<WAS_HOME>\lib
<WAS_HOME>\lib\ext
$WAS_EXT_DIRS (ws.ext.dirs)

Default
Delegation

mode
Parent First

WEB-INF/classes
WEB-INF/lib

Utility jars
EJB modules
Shared library
RAR file

IBM Software Group

WebSphere® Support Technical Exchange 7

WebSphere ClassLoader Overview
There are three major “classes” of ClassLoaders in the
WebSphere system

System classloader which are provided by the JVM

WebSphere Runtime classloaders which are used to load the
WebSphere runtime and some supporting libraries for
application use

Application classloaders which are used to load the application
artifacts (Web Modules, EJB modules, Utility jars)

IBM Software Group

WebSphere® Support Technical Exchange 8

WebSphere V6.1 Runtime ClassLoader Overview

Default
Delegation

mode
Parent First

IBM Software Group

WebSphere® Support Technical Exchange 9

WebSphere V6.1 Runtime ClassLoader Overview

The WebSphere extensions class loader is where
WebSphere itself is loaded.
WebSphere is packaged as a set of OSGi bundles.

http://www.osgi.org/
Each OSGi bundle is loaded separately by its own
classloader.
This network of OSGi class loaders is then connected to the
extensions class loader and the rest of the class loader
hierarchy through an OSGi gateway classloader.

http://www.osgi.org/

IBM Software Group

WebSphere® Support Technical Exchange 10

WebSphere Runtime ClassLoader
The WebSphere runtime classloader is implemented using the class
com.ibm.ws.bootstrap.ExtClassLoader (bootstrap.jar)

The WebSphere runtime is loaded by this classloader by using the directories and jar
files present in the directories specified by the system property ws.ext.dirs
(WAS_EXT_DIRS in setupCmdLine)

ws.ext.dirs =
d:/Program Files/IBM/WebSphere61/AppServer/java/lib;
d:\Program Files\IBM\WebSphere61\AppServer\profiles\AppSrv01/classes;
d:/Program Files/IBM/WebSphere61/AppServer/classes;
d:/Program Files/IBM/WebSphere61/AppServer/lib;
d:/Program Files/IBM/WebSphere61/AppServer/installedChannels;
d:/Program Files/IBM/WebSphere61/AppServer/lib/ext;
d:/Program Files/IBM/WebSphere61/AppServer/web/help;
d:/Program iles/IBM/WebSphere61/AppServer/deploytool/itp/plugins/com.ibm.etools.ejbdeploy/runtime

Debug information on this classloader can be obtained by using the system property -
Dws.ext.debug=true

Application code should not be loaded using the WebSphere Runtime classloader

IBM Software Group

WebSphere® Support Technical Exchange 11

Protecting Apps calling 6.1 internal classes

Ability to restrict access to
internal WebSphere classes

Should not call classes in
com.ibm.ws.* packages

Should only call classes in
com.ibm.websphere.*
packages.

This setting is a per-server
(JVM) setting called “Access
to internal server classes”

Default value is “Allow”

IBM Software Group

WebSphere® Support Technical Exchange 12

Application ClassLoader – Delegation Mode
There are two possible values for a classloader mode:

PARENT_FIRST

The PARENT_FIRST classloader mode causes the classloader to first
delegate the loading of classes to its parent classloader before attempting
to load the class from its local classpath. This is the default for classloader
policy and for standard JVM classloaders.

PARENT_LAST

The PARENT_LAST classloader mode causes the classloader to first
attempt to load classes from its local classpath before delegating the
classloading to its parent. This policy allows an application classloader to
override and provide its own version of a class that exists in the parent
classloader.

IBM Software Group

WebSphere® Support Technical Exchange 13

Application ClassLoader – Web Module Policy

Another key setting that controls the operation of
application classloader is the Web Module Policy

Module
each web module in your application will be loaded by a
separate classloader whose parent is the application
classloader

Application
web module in your application will be loaded by the single
application classloader. Every web module will be able to see
every other web module’s classes.

IBM Software Group

WebSphere® Support Technical Exchange 14

Application ClassLoader Policy

Another key setting that controls the operation of
application classloader is the Application Policy

Single
Application classloader can be shared by multiple applications

All Application loaded by one classloader

Multiple
Application classloader can not be shared by multiple
applications

Each Application loaded by separate classloader

IBM Software Group

WebSphere® Support Technical Exchange 15

Application ClassLoader
Enterprise Application EAR contains

Web modules, EJB modules, application client modules, resource adapters (RAR files), and
dependency or utility JARs

Application classloader loads EJB modules, dependency JAR files,
resource adapters, and shared libraries.
Implemented by com.ibm.ws.classloader.CompoundClassLoader

<WAS_HOME>/plugins/com.ibm.ws.runtime_6.1.0.jar

<WAS_HOME>/lib/classloader.jar

Depending on the application classloader policy, an application classloader
can be shared by multiple applications (SINGLE) or unique for each
application (MULTIPLE).
The application classloader policy controls the isolation of applications
running in the system. When set to SINGLE, applications are not isolated.
When set to MULTIPLE, applications are isolated from each other.
The application classloader policy is set via the admin console
Servers->Application Servers->Server1

IBM Software Group

WebSphere® Support Technical Exchange 16

V6.1 Server level Classloading settings

IBM Software Group

WebSphere® Support Technical Exchange 17

Application ClassLoader Mode – Multiple (Default)

App2Web.war set to
“Application” classloader

App1Web.war set to
“Module” classloader

Application
class-loader policy set to

“multiple”

IBM Software Group

WebSphere® Support Technical Exchange 18

Application ClassLoader Mode – Single

All “Application” classloader
combined in one due to policy “Single”

App2Web.war set to
“Application”

App1Web.war set to
“Module”

Application class-loader policy
set to “Single”

IBM Software Group

WebSphere® Support Technical Exchange 19

V6.1 Application level Classloading settings

PARENT_FIRST

PARENT_LAST

Multiple (separate Application classloaders)

Single (One Application classloader)

IBM Software Group

WebSphere® Support Technical Exchange 20

V6.1 WAR Module level Classloading settings

WAR Module Loaded by WAR classloader
“Classes loaded with parent class loader first”

WAR Module Loaded by Application classloader
“Classes loaded with application class loader first”

IBM Software Group

WebSphere® Support Technical Exchange 21

Shared library classloaders – server wide

Shared libraries enable you to package
application code outside the scope of
an enterprise application (ear) and have
the code visible to either all applications
on a server or to specific applications
on a server.

Shared libraries are defined in the
admin console using the path
Environment->Shared Libraries.

Like other resources in the console,
they can be defined at the Cell, Node,
or Server scope and can include
variable substitutions.

IBM Software Group

WebSphere® Support Technical Exchange 22

Shared Libraries – server wide - continued

After defining the shared library, you must associate with a server or application in order to use it.

To associate it with a server, use the admin console path
Servers->Application Servers->Your Server->ClassLoader to create a new classloader to load the
shared library and specify a delegation mode (PARENT_FIRST or PARENT_LAST)

After creating the classloader, select it and add the library to the classloader

IBM Software Group

WebSphere® Support Technical Exchange 23

Application ClassLoader - Reloading

Application classes can be “reloaded” via
two methods:

Manual – stop/start an application in the admin
console. Do not specify Reload interval.

Automatic – a reload interval can be configured
either in the application/web module extensions or
at deployment time

Automatic reloading should not be used in production
since a considerable overhead is introduced to periodically
scan the files that have been used by a classloader to see
if any have been modified.

IBM Software Group

WebSphere® Support Technical Exchange 24

Application packaging suggestions

Of course, package servlets into their respective WARs and EJBs into their
EJB jars. Where to put the rest of the supporting classes?

For classes only used by one WAR in your application, place them in the
WEB-INF/lib directory of your WAR

For classes shared among multiple modules (EJB or Web), place them in a
utility jar at the root of your EAR and reference them using the MANIFEST
classpath of each module that will access them

All EJB modules and Utility jars referenced via the MANIFEST classpath will
be loaded using a single Application classloader. This classloader is the
parent of the web module classloaders in the application.

If the Application’s ClassLoader policy is Application, then the Web Modules
are also loaded by the Application classloader (in addition to EJBs and Utility
jars)

IBM Software Group

WebSphere® Support Technical Exchange 25

ContextClassLoader

The context classloader is set on a thread by the container (Web or EJB) based on the
currently executing application artifact

The logical classpath is the accumulation of all classpaths searched when a load
operation is invoked on a class loader

The context classloader is set to the top level classloader for the executing application
(i.e. the classloader for the web module in the case of a web artifact or the application
classloader for an ejb)

An application can retrieve the context classloader via
Thread.currentThread().getContextClassLoader()

IBM Software Group

WebSphere® Support Technical Exchange 26

Common Issues – Native code shared libraries

Sometimes it is desirable to package code that depends on a native library in an application.
JVM will only allow a native library to be loaded once into the system since JVM has single
address space

As a result, any class that does a System.loadLibrary and has a “native” method cannot be
loaded by more than one classloader or reloaded (which would cause it to be loaded by a 2nd
classloader)

The solution is to place such classes in a single instance classloader
in the JVM (e.g. System CLASSPATH or Server-wide shared library)

you can break out just the few lines of Java code that load the native code into a class on its
own and place this file on WebSphere’s application class loader (in a utility JAR)

If multiple applications (EAR files) deployed to the same application server (JVM), you would
have to place the class file on the WebSphere extensions class loader instead to ensure the
native code is only loaded once per JVM.

If the native code is placed on a reloadable class loader (such as the application class loader
or the WAR class loader), it is important that the native code can properly unload itself should
the Java code have to reload.

IBM Software Group

WebSphere® Support Technical Exchange 27

Common issues – overriding Apache framework
A common need for applications is to provide a newer (or older) version of the Xerces parser
with their application

If you replace Xerces, then you must also replace Xalan (if in use by your application) or you
will get LinkageError: violates loader constraints (see later topic)

You must use a PARENT_LAST delegation mode to override Xerces so that the application
will see the application packaged version instead of the one supplied by WebSphere

The best way to accomplish this override is to use a server-wide shared library with
PARENT_LAST delegation

IBM Software Group

WebSphere® Support Technical Exchange 28

Common issues – NoClassDefFoundError (NCDFE)
Thrown if the Java Virtual Machine or a ClassLoader instance tries to load in the definition of
a class(as part of a normal method call or as part of creating a new instance using the new
expression) i.e. implicit classloading and no definition of the class could be found.

This exception is thrown when Java code cannot load the specified class.
Invalid or non-existent class

Class path problem
Manifest problem

Causes and Solutions
The classes have not been placed in the application EAR or elsewhere in the app
server classpath. In this case, add the missing classes into the application.

The more interesting scenario is when the classes are present, but still not found. What
is happening? As shown earlier, class loading occurs via a parent delegation model,
classloading is never delegated to children. So if class X is found higher in the
classloader hierarchy, then it cannot find its dependent class Y from a child
classloader.

Make sure you package a class and its dependencies at the same level in the
classloader hierarchy

IBM Software Group

WebSphere® Support Technical Exchange 29

Common issues – ClassNotFoundException (CNFE)
Thrown when an application tries to load in a class through its string name using explicit
classloading but no definition for the class with the specified name could be found.

• The forName method in class Class.
• The findSystemClass method in class ClassLoader .
• The loadClass method in class ClassLoader.

This exception is thrown when Java code cannot load the specified class.
The class is not visible on the logical classpath of the context class loader.

• The class not found is not in the logical class path of the class loader associated with the
current thread. The logical classpath is the accumulation of all classpaths searched when a
load operation is invoked on a class loader

The application incorrectly uses a class loader API.
• An application can obtain an instance of a class loader and call either the loadClass method on

that class loader, or it can call Class.forName(class_name, initialize, class_loader) with that
class loader. The application may be incorrectly using the class loader application programming
interface (API). For example, the class name is incorrect, the class is not visible on the logical
classpath of that class loader, or the wrong class loader was engaged..

IBM Software Group

WebSphere® Support Technical Exchange 30

ClassNotFoundException

To correct this problem:
• Make the application-specific classes visible to the appropriate application class loader.

• Search for the class not found (Class B).

• If Class B is in the proper location, search for the class that loads the dependent class
(Class A) in the Class Load Viewer.

• If the class is loaded and a ClassNotFound exception was thrown, then the .jar file or
class is not in proper context or the wrong API call in the current context was used. If no
class was found, do the following:

− Search for the class that generated the exception; that is, the class calling
Class.forName.

− See which class loader loads the class.
− Determine whether the class loader has access or can load the class not found by

evaluating the class path of the class loader.

• Ensure that the caller class (Class B) is visible to the JVM or WebSphere extensions
class loader.

IBM Software Group

WebSphere® Support Technical Exchange 31

ClassCastException
Thrown to indicate that the code has attempted to cast an object to a subclass of which
it is not an instance.

Object x = new Integer(0);
System.out.println((String)x); // x is of superclass type object.

The type of the source object is not an instance of the target class (type).
examining the class signature of the source object class, then verifying that it does not contain
the target class in its ancestry and the source object class is different than the target class

The class loader that loaded the source object (class) is different from the class loader
that loaded the target class

target class is visible on the classpaths of more than one class loader in the WebSphere
Application Server runtime environment.

The application fails to perform or improperly performs a narrow operation
resolving a remote enterprise bean (EJB) object, the application code does not perform a
narrow operation as required.
Do not narrow with super-interface of the EJB instead invoke narrow with the exact EJB
interface.

http://jspwiki.org/wiki/A2AClassCastException

http://jspwiki.org/wiki/A2AClassCastException

IBM Software Group

WebSphere® Support Technical Exchange 32

java.lang.LinkageError – violates loader constraints
This error occurs when two different views of the same class are defined by
the same initiating classloader.

For example, I have class X that depends on Xerces class A and Xalan class
B. Xalan class B also depends on Xerces class A. Suppose we place a
version of Xerces class A in our web application with PARENT_LAST
delegation and Xerces and Xalan also exist in the WebSphere runtime
classloader

When we load X, then it loads A from the web app and B from the runtime
classloader which in turn loads A again from the runtime classloader.

At this point, the LinkageError is thrown to prevent the potential type
spoofing issue.

Native library problem

http://www.artima.com/insidejvm/ed2/linkmod20.html

http://www.artima.com/insidejvm/ed2/linkmod20.html

IBM Software Group

WebSphere® Support Technical Exchange 33

Class loader viewer
Enable the Class loader viewer service:
Used to diagnosing problems with class loaders

Enable the class loader viewer service then use the console Class Loader
Viewer to examine class loaders and the classes loaded by each class
loader.

Servers > Application servers > Class Loader
Viewer Service.

Troubleshooting > Class Loader Viewer to
access the Class Loader Viewer in the console.

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/
ae/utrb_classload_viewer_service.html

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/utrb_classload_viewer_service.html

IBM Software Group

WebSphere® Support Technical Exchange 34

Additional WebSphere Product Resources

Discover the latest trends in WebSphere Technology and implementation, participate
in technically-focused briefings, webcasts and podcasts at:
www.ibm.com/developerworks/websphere/community/
Learn about other upcoming webcasts, conferences and events:
www.ibm.com/software/websphere/events_1.html

Join the Global WebSphere User Group Community: www.websphere.org

Access key product show-me demos and tutorials by visiting IBM Education Assistant:
ibm.com/software/info/education/assistant
Learn about the Electronic Service Request (ESR) tool for submitting problems
electronically:
www.ibm.com/software/support/viewlet/probsub/ESR_Overview_viewlet_swf.html

Sign up to receive weekly technical My support emails:
www.ibm.com/software/support/einfo.html

www.ibm.com/developerworks/websphere/community/
www.ibm.com/software/websphere/events_1.html
www.websphere.org
ibm.com/software/info/education/assistant
www.ibm.com/software/support/viewlet/probsub/ESR_Overview_viewlet_swf.html
www.ibm.com/software/support/einfo.html

IBM Software Group

WebSphere® Support Technical Exchange 35

Summary

Classloader overview
JVM & Websphere classloaders

Classloader delegation mode & policies
Parent first/last & application/single

Shared Libraries
Utility jar and native libraries

Class reloading

Common Exceptions & Causes
classCastException/classNotFoundException

IBM Software Group

WebSphere® Support Technical Exchange 36

Questions and Answers

WebSphere Application Server Infocener:
http://www-306.ibm.com/software/webservers/appserv/was/library/

http://www-306.ibm.com/software/webservers/appserv/was/library/

