
IBM XL Fortran for AIX, V12.1

Getting Started with XL Fortran

Version 12.1

GC23-8898-00

���

IBM XL Fortran for AIX, V12.1

Getting Started with XL Fortran

Version 12.1

GC23-8898-00

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 29.

First edition

This edition applies to IBM XL Fortran for AIX, V12.1 (Program number 5724-U82) and to all subsequent releases

and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the

level of the product.

© Copyright International Business Machines Corporation 1996, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document v

Conventions v

Related information ix

IBM XL Fortran information ix

Standards and specifications x

Other IBM information xi

Technical support xi

How to send your comments xi

Chapter 1. Introducing XL Fortran . . . 1

Commonality with other IBM compilers 1

Hardware and operating system support 1

A highly configurable compiler 1

Language standards compliance 2

Source-code migration and conformance checking 3

Tools and utilities 3

Program optimization 4

64-bit object capability 4

Shared memory parallelization 5

Diagnostic listings 6

Symbolic debugger support 6

Chapter 2. What’s new for IBM XL

Fortran for AIX, V12.1 7

Operating system support 7

XL Fortran language-related updates 7

OpenMP 3.0 7

Performance and optimization 8

New or changed compiler options and directives . . 9

Enhancements added in Version 11.1 9

Enhanced support for Fortran 2003 10

Architecture and processor support 12

Performance and optimization 13

Other new or changed compiler options 15

Chapter 3. Setting up and customizing

XL Fortran 17

Using custom compiler configuration files 17

Chapter 4. Developing applications

with XL Fortran 19

The compiler phases 19

Editing Fortran source files 19

Compiling with XL Fortran 20

Invoking the compiler 22

Compiling parallelized XL Fortran applications 22

Specifying compiler options 23

XL Fortran input and output files 24

Linking your compiled applications with XL Fortran 24

Linking new objects with existing ones 25

Relinking an existing executable file 25

Dynamic and static linking 25

Running your compiled application 26

XL Fortran compiler diagnostic aids 27

Debugging compiled applications 27

Determining what level of XL Fortran is installed 27

Notices 29

Trademarks and service marks 31

Index 33

© Copyright IBM Corp. 1996, 2008 iii

iv XL Fortran: Getting Started

About this document

This document contains overview and basic usage information for the IBM® XL

Fortran for AIX®, V12.1 compiler.

Who should read this document

This document is intended for Fortran developers who are looking for introductory

overview and usage information for XL Fortran. It assumes that you have some

familiarity with command-line compilers, a basic knowledge of the Fortran

programming language, and basic knowledge of operating system commands.

Programmers new to XL Fortran can use this document to find information on the

capabilities and features unique to XL Fortran.

How to use this document

Throughout this document, the xlf compiler invocation is used to describe the

actions of the compiler. You can, however, substitute other forms of the compiler

invocation command if your particular environment requires it, and compiler

option usage will remain the same unless otherwise specified.

While this document covers information on configuring the compiler environment,

and compiling and linking Fortran applications using the XL Fortran compiler, it

does not include the following topics:

v Compiler installation: see the XL Fortran Installation Guide for information on

installing XL Fortran.

v Compiler options: see the XL Fortran Compiler Reference for detailed information

on the syntax and usage of compiler options.

v The Fortran programming language: see the XL Fortran Language Reference for

information on the syntax, semantics, and IBM implementation of the Fortran

programming language.

v Programming topics: see the XL Fortran Optimization and Programming Guide for

detailed information on developing applications with XL Fortran, with a focus

on program portability and optimization.

Conventions

Typographical conventions

The following table explains the typographical conventions used in the IBM XL

Fortran for AIX, V12.1 information.

 Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable

names, compiler options, and

directives.

The compiler provides basic

invocation commands, xlf, along with

several other compiler invocation

commands to support various Fortran

language levels and compilation

environments.

© Copyright IBM Corp. 1996, 2008 v

Table 1. Typographical conventions (continued)

Typeface Indicates Example

italics Parameters or variables whose

actual names or values are to be

supplied by the user. Italics are

also used to introduce new terms.

Make sure that you update the size

parameter if you return more than

the size requested.

underlining The default setting of a parameter

of a compiler option or directive.

nomaf | maf

monospace Programming keywords and

library functions, compiler builtins,

examples of program code,

command strings, or user-defined

names.

To compile and optimize

myprogram.f, enter: xlf myprogram.f

-O3.

UPPERCASE

bold

Fortran programming keywords,

statements, directives, and intrinsic

procedures.

The ASSERT directive applies only to

the DO loop immediately following

the directive, and not to any nested

DO loops.

Qualifying elements (icons and bracket separators)

In descriptions of language elements, this information uses marked bracket

separators to delineate large blocks of text and icons to delineate small segments of

text as follows:

 Table 2. Qualifying elements

Bracket

separator text Icon Meaning

Fortran 2003

begins / ends

The text describes an IBM XL Fortran implementation of

the Fortran 2003 standard.

Fortran 95

begins / ends

The text describes an IBM XL Fortran implementation of

the Fortran 95 standard.

IBM extension

begins / ends

The text describes a feature that is an IBM XL Fortran

extension to the standard language specifications.

Syntax diagrams

Throughout this information, diagrams illustrate XL Fortran syntax. This section

will help you to interpret and use those diagrams.

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��─── symbol indicates the beginning of a command, directive, or statement.

The ───� symbol indicates that the command, directive, or statement syntax is

continued on the next line.

The �─── symbol indicates that a command, directive, or statement is continued

from the previous line.

The ───�� symbol indicates the end of a command, directive, or statement.

vi XL Fortran: Getting Started

Fragments, which are diagrams of syntactical units other than complete

commands, directives, or statements, start with the │─── symbol and end with

the ───│ symbol.

IBM XL Fortran extensions are marked by a number in the syntax diagram with

an explanatory note immediately following the diagram.

Program units, procedures, constructs, interface blocks and derived-type

definitions consist of several individual statements. For such items, a box

encloses the syntax representation, and individual syntax diagrams show the

required order for the equivalent Fortran statements.

v Required items are shown on the horizontal line (the main path):

�� keyword required_argument ��

v Optional items are shown below the main path:

�� keyword

optional_argument
 ��

Note: Optional items (not in syntax diagrams) are enclosed by square brackets ([

and]). For example, [UNIT=]u

v If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main

path.

�� keyword required_argument1

required_argument2
 ��

If choosing one of the items is optional, the entire stack is shown below the

main path.

�� keyword

optional_argument1

optional_argument2

 ��

v An arrow returning to the left above the main line (a repeat arrow) indicates

that you can make more than one choice from the stacked items or repeat an

item. The separator character, if it is other than a blank, is also indicated:

��

�

 ,

keyword

repeatable_argument

��

v The item that is the default is shown above the main path.

��

keyword
 default_argument

alternate_argument

��

v Keywords are shown in nonitalic letters and should be entered exactly as shown.

v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values. If a variable or user-specified name ends in _list, you can

provide a list of these terms separated by commas.

About this document vii

v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following is an example of a syntax diagram with an interpretation:

How to read syntax statements

Syntax statements are read from left to right:

v Individual required arguments are shown with no special notation.

v When you must make a choice between a set of alternatives, they are enclosed

by { and } symbols.

v Optional arguments are enclosed by [and] symbols.

v When you can select from a group of choices, they are separated by | characters.

v Arguments that you can repeat are followed by ellipses (...).

Example of a syntax statement

EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:

v Enter the keyword EXAMPLE.

v Enter a value for char_constant.

v Enter a value for a or b, but not for both.

v Optionally, enter a value for c or d.

v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.

��

(1)

EXAMPLE

char_constant

a

b

c

d

�

 ,

e

name_list

��

Notes:

1 IBM extension

Interpret the diagram as follows:

v Enter the keyword EXAMPLE.

v EXAMPLE is an IBM extension.

v Enter a value for char_constant.

v Enter a value for a or b, but not for both.

v Optionally, enter a value for c or d.

v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.

v Enter the value of at least one name for name_list. If you enter more than one value,

you must put a comma between each. (The _list syntax is equivalent to the previous

syntax for e.)

viii XL Fortran: Getting Started

v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram

representations.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a

simple style that does not try to conserve storage, check for errors, achieve fast

performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic

example. Basic examples are intended to document a procedure as it would be

performed during a basic, or default, installation; these need little or no

modification.

Notes on the terminology used

Some of the terminology in this information is shortened, as follows:

v The term free source form format often appears as free source form.

v The term fixed source form format often appears as fixed source form.

v The term XL Fortran often appears as XLF.

Related information

The following sections provide related information for XL Fortran:

IBM XL Fortran information

XL Fortran provides product information in the following formats:

v README files

README files contain late-breaking information, including changes and

corrections to the product information. README files are located by default in

the XL Fortran directory and in the root directory of the installation CD.

v Installable man pages

Man pages are provided for the compiler invocations and all command-line

utilities provided with the product. Instructions for installing and accessing the

man pages are provided in the IBM XL Fortran for AIX, V12.1 Installation Guide.

v Information center

The information center of searchable HTML files can be launched on a network

and accessed remotely or locally. Instructions for installing and accessing the

online information center are provided in the IBM XL Fortran for AIX, V12.1

Installation Guide.

The information center is viewable on the Web at http://
publib.boulder.ibm.com/infocenter/comphelp/v101v121/index.jsp.

v PDF documents

PDF documents are located by default in the /usr/lpp/xlf/doc/LANG/pdf/

directory, where LANG is one of en_US or ja_JP. The PDF files are also available

on the Web at http://www.ibm.com/software/awdtools/fortran/xlfortran/
library.

About this document ix

http://publib.boulder.ibm.com/infocenter/comphelp/v101v121/index.jsp
http://publib.boulder.ibm.com/infocenter/comphelp/v101v121/index.jsp
http://www.ibm.com/software/awdtools/fortran/xlfortran/library
http://www.ibm.com/software/awdtools/fortran/xlfortran/library

The following files comprise the full set of XL Fortran product information:

 Table 3. XL Fortran PDF files

Document title

PDF file

name Description

IBM XL Fortran for AIX,

V12.1 Installation Guide,

GC23-8893-00

install.pdf Contains information for installing XL Fortran

and configuring your environment for basic

compilation and program execution.

Getting Started with IBM

XL Fortran for AIX, V12.1,

GC23-8898-00

getstart.pdf Contains an introduction to the XL Fortran

product, with information on setting up and

configuring your environment, compiling and

linking programs, and troubleshooting

compilation errors.

IBM XL Fortran for AIX,

V12.1 Compiler Reference,

SC23-8892-00

compiler.pdf Contains information about the various

compiler options and environment variables.

IBM XL Fortran for AIX,

V12.1 Language Reference,

SC23-8891-00

langref.pdf Contains information about the Fortran

programming language as supported by IBM,

including language extensions for portability

and conformance to nonproprietary standards,

compiler directives and intrinsic procedures.

IBM XL Fortran for AIX,

V12.1 Optimization and

Programming Guide,

SC23-8894-00

proguide.pdf Contains information on advanced

programming topics, such as application

porting, interlanguage calls, floating-point

operations, input/output, application

optimization and parallelization, and the XL

Fortran high-performance libraries.

To read a PDF file, use the Adobe® Reader. If you do not have the Adobe

Reader, you can download it (subject to license terms) from the Adobe Web site

at http://www.adobe.com.

More information related to XL Fortran including redbooks, white papers, tutorials,

and other articles, is available on the Web at:

http://www.ibm.com/software/awdtools/fortran/xlfortran/library

Standards and specifications

XL Fortran is designed to support the following standards and specifications. You

can refer to these standards for precise definitions of some of the features found in

this information.

v American National Standard Programming Language FORTRAN, ANSI X3.9-1978.

v American National Standard Programming Language Fortran 90, ANSI X3.198-1992.

v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

v Federal (USA) Information Processing Standards Publication Fortran, FIPS PUB 69-1.

v Information technology - Programming languages - Fortran, ISO/IEC 1539-1:1991 (E).

v Information technology - Programming languages - Fortran - Part 1: Base language,

ISO/IEC 1539-1:1997. (This information uses its informal name, Fortran 95.)

v Information technology - Programming languages - Fortran - Part 1: Base language,

ISO/IEC 1539-1:2004. (This information uses its informal name, Fortran 2003.)

v Information technology - Programming languages - Fortran - Enhanced data type

facilities, ISO/IEC JTC1/SC22/WG5 N1379.

x XL Fortran: Getting Started

http://www.adobe.com
http://www.ibm.com/software/awdtools/fortran/xlfortran/library

v Information technology - Programming languages - Fortran - Floating-point exception

handling, ISO/IEC JTC1/SC22/WG5 N1378.

v Military Standard Fortran DOD Supplement to ANSI X3.9-1978, MIL-STD-1753

(United States of America, Department of Defense standard). Note that XL

Fortran supports only those extensions documented in this standard that have

also been subsequently incorporated into the Fortran 90 standard.

v OpenMP Application Program Interface Version 2.5, available at

http://www.openmp.org

Other IBM information

v AIX Commands Reference, Volumes 1 - 6, SC23-4888

v Technical Reference: Base Operating System and Extensions, Volumes 1 & 2, SC23-4913

v AIX National Language Support Guide and Reference, SC23-4902

v AIX General Programming Concepts: Writing and Debugging Programs, SC23-4896

v AIX Assembler Language Reference, SC23-4923

All AIX information is available at http://publib.boulder.ibm.com/infocenter/
pseries/v5r3/index.jsp.

v Parallel Environment for AIX: Operation and Use

v ESSL for AIX V4.2 Guide and Reference, SA22-7904, available at

http://publib.boulder.ibm.com/clresctr/windows/public/esslbooks.html

Technical support

Additional technical support is available from the XL Fortran Support page at

http://www.ibm.com/software/awdtools/fortran/xlfortran/support. This page

provides a portal with search capabilities to a large selection of Technotes and

other support information.

If you cannot find what you need, you can send e-mail to compinfo@ca.ibm.com.

For the latest information about XL Fortran, visit the product information site at

http://www.ibm.com/software/awdtools/fortran/xlfortran.

How to send your comments

Your feedback is important in helping to provide accurate and high-quality

information. If you have any comments about this information or any other XL

Fortran information, send your comments by e-mail to compinfo@ca.ibm.com.

Be sure to include the name of the information, the part number of the

information, the version of XL Fortran, and, if applicable, the specific location of

the text you are commenting on (for example, a page number or table number).

About this document xi

http://www.openmp.org
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp
http://publib.boulder.ibm.com/clresctr/windows/public/esslbooks.html
http://www.ibm.com/software/awdtools/fortran/xlfortran/support
http://www.ibm.com/software/awdtools/fortran/xlfortran

xii XL Fortran: Getting Started

Chapter 1. Introducing XL Fortran

IBM XL Fortran for AIX, V12.1 is an advanced, high-performance compiler that can

be used for developing complex, computationally intensive programs, including

interlanguage calls with C and C++ programs.

This section discusses the features of the XL Fortran compiler at a high level. It is

intended for people who are evaluating the compiler, and for new users who want

to find out more about the product.

Commonality with other IBM compilers

IBM XL Fortran for AIX, V12.1 is part of a larger family of IBM C, C++, and

Fortran compilers.

XL Fortran, together with XL C and XL C/C++, comprise the family of XL

compilers.

These compilers are derived from a common code base that shares compiler

function and optimization technologies for a variety of platforms and

programming languages. Programming environments include IBM AIX, IBM Blue

Gene/L™, IBM Blue Gene/P™, the Cell Broadband Engine™ architecture, IBM

i5/OS®, selected Linux® distributions, IBM z/OS®, and IBM z/VM®. The common

code base, along with compliance with international programming language

standards, helps support consistent compiler performance and ease of program

portability across multiple operating systems and hardware platforms.

Hardware and operating system support

IBM XL Fortran for AIX, V12.1 supports AIX 5L™ for POWER™ Version 5.3 and

AIX Version 6.1. See the README file and ″Before installing XL Fortran″ in the XL

Fortran Installation Guide for a complete list of requirements.

The compiler, its libraries, and its generated object programs will run on systems

with the required software and disk space.

To take maximum advantage of the various supported hardware configurations,

the compiler provides options to performance-tune applications specifically to the

type of hardware that will be used to execute your compiled applications.

A highly configurable compiler

You can use a variety of compiler invocation commands and options to tailor the

compiler to your unique compilation requirements.

Compiler invocation commands

XL Fortran provides several different commands that you can use to

invoke the compiler, for example, xlf, xlf90, xlf95, and xlf2003. Each

invocation command is unique in that it instructs the compiler to tailor

compilation output to meet a specific language level specification.

Compiler invocation commands are provided to support all standardized

Fortran language levels, and many popular language extensions as well.

© Copyright IBM Corp. 1996, 2008 1

The compiler also provides corresponding ″_r″ versions of most invocation

commands, for example, xlf_r. The ″_r″ invocations instruct the compiler to

link and bind object files to thread safe components and libraries, and

produce thread safe object code for compiler-created data and procedures.

For more information about XL Fortran compiler invocation commands,

see ″Compiling XL Fortran programs″ in the XL Fortran Compiler Reference .

Compiler options

You can choose from a large selection of compiler options to control

compiler behavior. Different categories of options help you to debug your

applications, optimize and tune application performance, select language

levels and extensions for compatibility with non-standard features and

behaviors supported by other Fortran compilers, and perform many other

common tasks that would otherwise require changing the source code.

 XL Fortran lets you specify compiler options through a combination of

environment variables, compiler configuration files, command line options,

and compiler directive statements embedded in your program source.

For more information about XL Fortran compiler options, see ″Summary of

compiler options″ in the XL Fortran Compiler Reference.

Custom compiler configuration files

The installation process creates a default plain text compiler configuration

file containing stanzas that define compiler option default settings.

 Your compilation needs may frequently call for specifying compiler option

settings other than the default settings provided by XL Fortran. If so, you

can use makefiles to define your compiler option settings, or alternatively,

you can create custom configuration files to define your own sets of

frequently used compiler option settings.

See “Using custom compiler configuration files” on page 17 for more

information.

Language standards compliance

The compiler supports the following programming language specifications for

Fortran:

v ANSI X3.9-1978 (referred to as FORTRAN 77)

v ISO/IEC 1539-1:1991(E) and ANSI X3.198-1992 (referred to as Fortran 90 or

F90)

v ISO/IEC 1539-1:1997 (referred to as Fortran 95 or F95)

v Extensions to the Fortran 95 standard:

– Industry extensions that are found in Fortran products from various

compiler vendors

– Extensions specified in SAA® Fortran
v Most of the Fortran 2003 standard, except for derived type parameters, but

including object-oriented programming, as described in “Enhanced support

for Fortran 2003” on page 10

v Common Fortran language extensions defined by other compiler vendors,

in addition to those defined by IBM

In addition to the standardized language levels, XL Fortran supports language

extensions, including:
v OpenMP V2.5 and some features of the V3.0 extensions to support portable

parallelized programming

2 XL Fortran: Getting Started

v Language extensions to support vector programming

In addition to the standardized language levels, XL Fortran supports many

industry language extensions, including extensions to support vector

programming.

See ″Language standards″ in the XL Fortran Language Reference for more

information about Fortran language specifications and extensions.

Source-code migration and conformance checking

XL Fortran helps protect your investment in your existing Fortran source code by

providing compiler invocation commands that instruct the compiler to inspect your

application for conformance to to a specific language level and warn you if it finds

constructs and keywords that do not conform to the specified language level.

You can also use the -qlanglvl compiler option to specify a given language level,

and the compiler will issue warnings if language elements in your program source

do not conform to that language level. Additionally, you can name your source

files with common filename extensions such as .f77, .f90, f95, or .f03, then use the

generic compiler invocations such as xlf or xlf_r to automatically select the

appropriate language-level appropriate to the filename extension.

To protect your investments in existing source code, you can rebuild your

FORTRAN 77, Fortran 90, Fortran 95, and Fortran 2003 source with XL Fortran and

link them all into the same application. Similarly, object code or libraries compiled

with previous versions of XL Fortran are still compatible with the newest XL

Fortran compiler and runtime environment.

See ″qlanglvl″ in the XL Fortran Compiler Reference for more information.

Tools and utilities

There are many tools and utilities that are included with XL Fortran.

xlfndi This is a script you can use to install XL Fortran to a non-default directory

location.

cleanpdf command

A command related to profile-directed feedback (PDF), cleanpdf removes

all profiling information from the directory to which profile-directed

feedback data is written.

mergepdf command

A command related to profile-directed feedback (PDF), mergepdf provides

the ability to weight the importance of two or more PDF records when

combining them into a single record. The PDF records must be derived

from the same executable.

resetpdf command

The current behavior of the cleanpdf command is the same as the resetpdf

command, and is retained for compatibility with earlier releases on other

platforms.

showpdf command

The showpdf command displays the call and block counts for all

procedures executed in a profile-directed feedback training run

(compilation under the options -qpdf1 and -qshowpdf).

Chapter 1. Introducing XL Fortran 3

Program optimization

XL Fortran provides several compiler options that can help you control the

optimization or performance of your programs.

With these options, you can:

v Select different levels of compiler optimizations

v Control optimizations for loops, floating point, and other types of operations

v Optimize a program for a particular class of machines or for a very specific

machine configuration, depending on where the program will run

Optimizing transformations can give your application better overall execution

performance. Fortran provides a portfolio of optimizing transformations tailored to

various supported hardware. These transformations can:

v Reduce the number of instructions executed for critical operations.

v Restructure generated object code to make optimal use of the PowerPC®

architecture.

v Improve the usage of the memory subsystem.

v Exploit the ability of the architecture to handle large amounts of shared memory

parallelization.

For more information, see:

v ″Optimizing your applications″ in the XL Fortran Optimization and Programming

Guide

v ″Optimizing and tuning options″ in the XL Fortran Compiler Reference

64-bit object capability

The XL Fortran compiler’s 64-bit object capability addresses increasing demand for

larger storage requirements and greater processing power.

The AIX operating system provides an environment that allows you to develop

and execute programs that exploit 64-bit processors through the use of 64-bit

address spaces.

To support larger executables that can be fit within a 64-bit address space, a

separate 64-bit object form is used. The binder binds these objects to create 64-bit

executables. Objects that are bound together must all be of the same object format.

The following scenarios are not permitted and will fail to load, or execute, or both:

v A 64-bit object or executable that has references to symbols from a 32-bit library

or shared library

v A 32-bit object or executable that has references to symbols from a 64-bit library

or shared library

v A 64-bit executable that explicitly attempts to load a 32-bit module

v A 32-bit executable that explicitly attempts to load a 64-bit module

v Attempts to run 64-bit applications on 32-bit platforms

On both 64-bit and 32-bit platforms, 32-bit executables will continue to run as they

currently do on a 32-bit platform.

XL Fortran supports 64-bit mode mainly through the use of the -q64 and -qarch

compiler options. This combination determines the bit mode and instruction set for

the target architecture.

4 XL Fortran: Getting Started

For more information, see ″Using XL Fortran in a 64-bit environment″ in the XL

Fortran Compiler Reference.

Shared memory parallelization

XL Fortran supports application development for multiprocessor system

architectures.

You can use any of the following methods to develop your parallelized

applications with XL Fortran:
v Directive-based shared memory parallelization (OpenMP, SMP)

v Instructing the compiler to automatically generate shared memory

parallelization

v Message passing based shared or distributed memory parallelization (MPI)

v POSIX threads (Pthreads) parallelization

v Low-level UNIX® parallelization using fork() and exec()

The parallel programming facilities of the AIX operating system are based on the

concept of threads. Parallel programming exploits the advantages of multiprocessor

systems, while maintaining a full binary compatibility with existing uniprocessor

systems. This means that a multithreaded program that works on a uniprocessor

system can take advantage of a multiprocessor system without recompiling.

For more information, see ″Parallel programming with XL Fortran″ in the XL

Fortran Optimization and Programming Guide.

OpenMP directives

OpenMP directives are a set of API-based commands supported by XL Fortran and

many other IBM and non-IBM C, C++, and Fortran compilers.

You can use OpenMP directives to instruct the compiler how to parallelize a

particular loop. The existence of the directives in the source removes the need for

the compiler to perform any parallel analysis on the parallel code. OpenMP

directives requires the presence of Pthread libraries to provide the necessary

infrastructure for parallelization.

OpenMP directives address three important issues of parallelizing an application:
1. Clauses and directives are available for scoping variables. Frequently,

variables should not be shared; that is, each processor should have its

own copy of the variable.

2. Work sharing directives specify how the work contained in a parallel

region of code should be distributed across the SMP processors.

3. Directives are available to control synchronization between the processors.

Beginning with this release, XL Fortran supports some features of the OpenMP API

Version 3.0 specification. See “OpenMP 3.0” on page 7 for an overview of the

changes introduced by this feature.

For more information about program performance optimization, see:

v ″Optimizing your applications″ in the XL Fortran Optimization and Programming

Guide

v www.openmp.org

Chapter 1. Introducing XL Fortran 5

http://www.openmp.org

Diagnostic listings

The compiler output listing can provide important information to help you

develop and debug your applications more efficiently.

Listing information is organized into optional sections that you can include or

omit. For more information about the applicable compiler options and the listing

itself, refer to ″Understanding XL Fortran compiler listings″ in the XL Fortran

Compiler Reference.

Symbolic debugger support

You can instruct XL Fortran to include debugging information in your compiled

objects. That information can be examined by dbx or any other symbolic debugger

that supports the AIX XCOFF executable format to help you debug your programs.

6 XL Fortran: Getting Started

Chapter 2. What’s new for IBM XL Fortran for AIX, V12.1

This section describes new added features and enhancements in IBM XL Fortran

for AIX, V12.1.

Operating system support

IBM XL Fortran for AIX, V12.1 now supports AIX V6.1 as well as AIX V5.3.

This version of the compiler does not support AIX V5.2.

XL Fortran language-related updates

Fortran 2003 enhancements

The OPEN and INQUIRE statements have been updated with the ENCODING= specifier

to indicate the encoding form of the file.

IEEE module enhancements

The IEEE_ARITHMETIC module defines a new constant, IEEE_OTHER_VALUE.

The IEEE_ARITHMETIC module defines three new functions:

IEEE_SET_UNDERFLOW_MODE, IEEE_GET_UNDERFLOW_MODE and

IEEE_SUPPORT_UNDERFLOW_MODE.

OpenMP 3.0

In this release, XL Fortran has added some of the features of the OpenMP API

Version 3.0 specification. The XL Fortran implementation is based on IBM’s

interpretation of the OpenMP Application Program Interface Draft 3.0 Public

Comment.

The main differences between Version 2.5 and Version 3.0 implemented in this

release are:

v Addition of task level parallelization. The new OpenMP constructs TASK and

TASKWAIT give users the ability to parallelize irregular algorithms, such as pointer

chasing or recursive algorithms for which the existing OpenMP constructs were

not adequate.

v Nesting support - a COLLAPSE clause has been added to the DO, and PARALLEL DO

directives to allow parallelization of perfect loop nests. This means that multiple

loops in a nest can be parallelized.

For more information, see:

v ″Parallel programming with XL Fortran″ in the XL Fortran Optimization and

Programming Guide

v www.openmp.org

© Copyright IBM Corp. 1996, 2008 7

http://www.openmp.org

Performance and optimization

Some features and enhancements can assist with performance tuning and

optimization of your application.

Enhancements to -qstrict

Many suboptions have been added to the -qstrict option to allow more

fine-grained control over optimizations and transformations that violate strict

program semantics. In previous releases, the -qstrict option disabled all

transformations that violate strict program semantics. This is still the behavior if

you use -qstrict without suboptions. Likewise, in previous releases -qnoqstrict

allowed transformations that could change program semantics. Since higher level

of optimizations may require relaxing strict program semantics, the addition of the

suboptions allow you to relax selected rules in order to get specific benefits of

faster code without turning off all semantic verification.

There are 16 new suboptions that can be used separately or by using a suboption

group. The groups are

all Disables all semantics-changing transformations, including those controlled

by the other suboptions.

ieeefp Controls whether individual operations conform to IEEE 754 semantics.

order Controls whether or not individual operations can be reordered in a way

that may violate program language semantics.

precision

Controls optimizations and transformations that may affect the precision of

program results.

exceptions

Controls optimizations and transformations that may affect the runtime

exceptions generated by the program.

For detailed information about these suboptions, refer to ″-qstrict″ in the XL Fortran

Compiler Reference.

Performance-related compiler options and directives

The entries in the following table describe new or changed compiler options and

directives.

Information presented here is a brief overview. For detailed information about

these and other performance-related compiler options, refer to ″Optimization and

tuning options″ in the XL Fortran Compiler Reference.

 Table 4. Performance-related compiler options and directives

Option/directive Description

EXECUTION_FREQUENCY The EXECUTION_FREQUENCY directive marks source code

that you expect will be executed very frequently or

very infrequently. When optimization is enabled, the

directive is used as a hint to the optimizer.

8 XL Fortran: Getting Started

Table 4. Performance-related compiler options and directives (continued)

Option/directive Description

-qreport The listing now contains information about how many

streams are created for each loop and which loops

cannot be SIMD vectorized due to non-stride-one

references. You can use this information to improve the

performance of your applications.

-qsmp=omp When -qsmp=omp is in effect, some of the additional

functionality of OpenMP API 3.0 is now available. For

more information, see “OpenMP 3.0” on page 7.

For additional information about performance tuning and program optimization,

refer to ″Optimizing your applications″ in the XL Fortran Optimization and

Programming Guide.

New or changed compiler options and directives

Compiler options can be specified on the command line or through directives

embedded in your application source files. See the XL Fortran Compiler Reference for

detailed descriptions and usage information for these and other compiler options.

 Table 5. New or changed compiler options and directives

Option/directive Description

-qstrict Many suboptions have been added to the -qstrict option to

allow more control over optimizations and transformations

that violate strict program semantics. See “Performance and

optimization” on page 8 for more information.

-qfpp Allows Fortran-specific preprocessing features in the C

preprocessor which ships with XL Fortran. Since it is a C

preprocessor option it is invoked with the -WF option as

-WF, -qfpp.

-qppsuborigarg Instructs the C preprocessor to substitute original macro

arguments before further macro expansion. Since it is a C

preprocessor option it is invoked with the -WF option as

-WF, -qppsuborigarg.

EXECUTION_FREQUENCY The EXECUTION_FREQUENCY directive marks source code that

you expect will be executed very frequently or very

infrequently.

-qreport When used together with compiler options that enable

automatic parallelization or vectorization, the -qreport

option now reports the number of streams in a loop and

produces information when loops cannot be SIMD

vectorized due to non-stride-one references.

-qsmp=omp XL Fortran now supports some features of OpenMP 3.0. For

more information, see “OpenMP 3.0” on page 7.

-qtimestamps This option can be used to remove timestamps from

generated binaries.

Enhancements added in Version 11.1

This section describes new added features and enhancements to the compiler in

the previous version, Version 11.1.

Chapter 2. What’s new for IBM XL Fortran for AIX, V12.1 9

Enhanced support for Fortran 2003

XL Fortran provides one of the most complete Fortran 2003 implementations

currently available, with Derived Type Parameters being the only major feature not

yet implemented.

The enhanced compliance with the Fortran 2003 standard includes:

v Implementation of the full Fortran 2003 object-oriented programming model,

including:

– Type extension

– Type-bound procedures

– Type finalization

– Polymorphism and runtime type determination including the SELECT TYPE

construct

– Abstract and generic interfaces

– Declaration of abstract types and deferred bindings

– PASS attribute
v I/O enhancements

– User-defined derived type I/O

– New I/O specifiers including SIGN= and DECIMAL= (DC and DP edit

descriptors)

– Asynchronous I/O as defined by Fortran 2003 including the WAIT statement

– User-specifed control of rounding during format conversion using the

ROUND= specifier and new edit descriptors

– Handling of IEEE infinity and not-a-number in REAL and COMPLEX editing

– Support for the PAD= specifier on INQUIRE operations

– Support for the PAD= and BLANK= specifiers on READ statements

– Support for the DELIM= specifier on WRITE statements

– Support for the stream access method
v Scoping and data manipulation enhancements

– Renaming of defined operators on USE statements

– Fortran 2003 VOLATILE statement

– COMPLEX literals

– Pointer assignment and initialization expression enhancements

– Improved structure constructors

– Allocatable objects beyond Fortran 95 arrays

– Allocatable enhancements including resizing on assignment and

MOVE_ALLOC intrinsic

– Explicit type specification in an array constructor

– ASSOCIATE construct

– Support for enumerators

– BIND(C) for portable interoperability with C code
v Procedure enhancements

– Generic bindings for interfaces, defined operators, and defined assignment

– VALUE attribute for characters of length greater than one and derived types

with allocatable components

– Procedure pointers, procedure declaration statement, and procedure pointers

as derived type components

10 XL Fortran: Getting Started

– Generalization of the MODULE PROCEDURE statement

– Deferred CHARACTER length
v Intrinsic Function Enhancements

– IEEE and Fortran environment modules

– MAX, MIN, MAXLOC, MINLOC, MAXVAL, and MINVAL intrinsics for

character types

– Allow REAL type for COUNT_RATE argument of SYSTEM_CLOCK

– Allow boz-literal constants on INT, REAL, CMPLX, and DBL intrinsics

– Allow a new KIND argument on all instrinsics mandated by Fortran 2003

– Returning signed zero results from the ATAN2, LOG, and SQRT intrinsics

– Added SELECTED_CHAR_KIND intrinsic
v Other enhancements

– Enhanced STOP statement

– Increased the maximum number of continuation lines

Fortran 2003 compiler invocations and file types

Compiler invocation commands instruct the compiler to adhere more closely to

Fortran 2003 language standards when compiling your applications. The new

invocations are:
v xlf2003

v xlf2003_r (for threaded applications)

v f2003

These invocations provide partial compliance to the Fortran 2003 standard. You can

obtain behavior that complies to the Fortran 2003 standard by doing the following:

1. Set the XLFRTEOPTS environment variable to

″err_recovery=no:langlvl=2003std:iostat_end=2003std:internal_nldelim=2003std″

2. Invoke the compiler with the following option settings: ″-qlanglvl=2003std

-qnodirective -qnoescape -qextname -qfloat=nomaf:rndsngl:nofold

-qnoswapomp -qstrictieeemod″

In addition to the compiler invocations, this XL Fortran also supports new filename

extensions:
v .f03

v .F03 (invokes the C preprocessor before compiling)

Compiler option -qxlf2003

XL Fortran supports a compatibility option, -qxlf2003. This option provides

backward compatibility with XL Fortran V10.1 and the Fortran 2003 standard for

certain aspects of the language.

When compiling with the Fortran 2003 compiler invocations, the default setting is

-qxlf2003=polymorphic. This setting instructs the compiler to allow polymorphic

items such as the CLASS type specifier and SELECT TYPE construct in your

Fortran application source. For all other compiler invocations, the default is

-qxlf2003=nopolymorphic.

The -qxlf2003 compiler option also includes several other suboptions to provide

backward compatibility with earlier versions of XL Fortran. See -qxlf2003 in the XL

Chapter 2. What’s new for IBM XL Fortran for AIX, V12.1 11

Fortran Compiler Reference for more information.

Architecture and processor support

The -qarch and -qtune compiler options control the code generated by the

compiler. These compiler options adjust the instructions, scheduling, and other

optimizations to give the best performance for a specified target processor or range

of processors.

New default settings for -qarch, -qtune

The new default -qarch and -qtune settings are:
v -qarch=ppc

v -qtune=balanced

The -qtune=balanced suboption is new for this release, and becomes the default

-qtune setting when certain -qarch settings are specified. Using -qtune=balanced

instructs the compiler to tune generated code for optimal performance across a

range of recent processor architectures, including POWER6™.

Important: The change to the -qarch default suboption setting can affect the

results of floating-point arithmetic computations with REAL(4) data types in your

programs. The -qarch=com default used in the previous release of the compiler

caused such computations to be performed using double precision instructions

followed by rounding. The new -qarch=ppc default instructs the compiler to

generate code that uses short floating point instructions. The difference in

computational method can affect the precision of computational results. To achieve

the behavior of the previous -qarch=com default, specify the new -qfloat=nosingle

compiler option when compiling your application.

New support for POWER6 processors

XL Fortran Version 11.1 expanded the list of -qarch and -qtune suboptions to

support the newly-available POWER6 processors.

The following -qarch and -qtune options are now available:
v -qarch=pwr6

v -qarch=pwr6e

v -qtune=pwr6

The -qipa compiler option also adds a new architecture cloning suboption to

support interprocedural analysis (IPA) optimizations on POWER6 processors:

v -qipa=clonearch=pwr6

Support removed for selected processors

XL Fortran Version 11.1 removed support for processor architectures not supported

by AIX V5.2, such as POWER, POWER2™, and PowerPC 601. As a result, the

following -qarch and -qtune suboption settings are no longer supported.
v -qarch= com | pwr | pwr2 | pwr2s | p2sc | 601 | 603

v -qtune= pwr | pwr2 | pwr2s | pwrx | p2sc | 601 | 603

The compiler continues to recognize these suboption settings, and will still

generate code for their corresponding architectures. However, in some cases the

12 XL Fortran: Getting Started

behavior of that code might differ from code generated by previous versions of the

compiler. Also, code generated for these unsupported architectures may not even

execute at all on supported AIX systems because of differences in architecture.

Use caution if you will still be using these unsupported -qarch and -qtune

suboption settings.

Performance and optimization

Many enhancements were made to assist with performance tuning and program

optimization.

Performance-related compiler options and directives

The entries in the following table describes new or changed compiler options and

directives.

Information presented here is just a brief overview. For more information about

these and other performance-related compiler options, refer to ″Optimization and

tuning options″ in the XL Fortran Compiler Reference.

 Table 6. Performance-related compiler options and directives

Option/directive Description

-qfloat= fenv|nofenv These new -qfloat suboptions inform the compiler if

code has a dependency on the floating-point hardware

environment, such as explicitly reading or writing the

floating-point status and control register. Specifying

-qfloat=nofenv indicates that there is no dependency

on the hardware environment, allowing the compiler to

perform aggressive optimizations.

-qfloat= hscmplx|nohscmplx Specifying -qfloat=hscmplx improves optimization of

operations involving complex division and complex

absolute values.

-qfloat= rngchk|norngchk Specifying -qfloat=rngchk enables range checking on

input arguments for software divide and inlined sqrt

operations. Specifying -qfloat=norngchk instructs the

compiler to skip range checking, allowing for better

performance in certain circumstances. Specifying the

-qnostrict compiler option sets -qfloat=norngchk.

-qfloat= single|nosingle Specifying -qfloat=single instructs the compiler to

compute single-precision floating-point values using

single-precision arithmetic instructions supported by all

current PowerPC processors. Use -qfloat=nosingle if

you need to preserve the computational behavior in

applications originally compiled for earlier processors,

such as POWER and POWER2 processors. You may

also need to specify -qfloat=norndsngl to obtain the

same computational results.

-qipa=clonearch=pwr6 The -qipa=clonearch compiler option now includes a

new pwr6 suboption to support interprocedural

analysis (IPA) optimizations on POWER6 processors.

-qipa=threads=

[auto|noauto|number]

This new -qipa suboption lets you specify how many

threads the compiler will assign to code generation

during the second IPA pass.

Chapter 2. What’s new for IBM XL Fortran for AIX, V12.1 13

Table 6. Performance-related compiler options and directives (continued)

Option/directive Description

-qminimaltoc|-qnominimaltoc Specifying -qminimaltoc helps avoid toc overflow

conditions in 64-bit compilations by placing toc entries

into a separate data section for each object file.

-qpdf The -qpdf option can now be used to provide

profile-directed feedback on specific objects. See ″Object

level profile-directed feedback″ in the XL Fortran

Optimization and Programming Guide for more

information.

-qsmp= threshold=n When -qsmp=auto is in effect, this new suboption lets

you specify the amount of work required in a loop

before the compiler will consider it for automatic

parallelization.

EXPECTED_VALUE(param,

value)

Use the EXPECTED_VALUE directive to specify a

value that a parameter passed in a function call is most

likely to take at run time. The compiler can use this

information to perform certain optimizations, such as

function cloning and inlining.

Directives and intrinsics in Version 11.1

PowerPC cache control

The PowerPC architecture specifies the dcbst and dcbf cache copy instructions.

The following new directives provide direct programmer access to these

instructions.

v DCBST(variable) ! Data Cache Block Store

v DCBF(variable) ! Data Cache Block Flush

For more information, see ″Hardware-specific directives″ in the XL Fortran

Language Reference.

POWER6 prefetch extensions and cache control

The POWER6 processor has cache control and stream prefetch extensions with

support for store stream prefetch and prefetch depth control. XL Fortran provides

the following new directives to provide direct programmer access to these

instructions.

v DCBFL(variable); ! pwr6 - Data Cache Block Flush from L1 data cache

only

v PROTECTED_UNLIMITED_STREAM_SET_FORWARD(prefetch_variable, stream_id) !

pwr5 and pwr6

v PROTECTED_UNLIMITED_STREAM_SET_BACKWARD(prefetch_variable, stream_id)

! pwr5 and pwr6

v PROTECTED_UNLIMITED_STORE_STREAM_SET_FORWARD(prefetch_variable,

stream_id) ! pwr6

v PROTECTED_UNLIMITED_STORE_STREAM_SET_BACKWARD(prefetch_variable,

stream_id) ! pwr6

v PROTECTED_STORE_STREAM_SET_FORWARD(prefetch_variable, stream_id) !

pwr6

v PROTECTED_STORE_STREAM_SET_BACKWARD(prefetch_variable, stream_id) !

pwr6

14 XL Fortran: Getting Started

v PROTECTED_STREAM_COUNT_DEPTH(unit_count, prefetch_depth, stream_id) !

pwr6

Other new or changed compiler options

Compiler options can be specified on the command line or through directives

embedded in your application source files. See the XL Fortran Compiler Reference for

detailed descriptions and usage information for these and other compiler options.

 Table 7. Other new or changed compiler options

Option/directive Description

-qalias_size=bytes The -qalias_size option helps you avoid memory

fragmentation in aliasing tables by letting you specify an

appropriate initial size for those tables. This option can also

be specified in your program source with @PROCESS

ALIAS_SIZE(bytes).

-qdescriptor= v1|v2 The -qdescriptor option lets you select the XL Fortran

internal descriptor data structure format used in your

compiled applications. The default v1 suboption uses a data

structure format that provides backwards compatibility

with objects compiled with XL Fortran V10.1 and earlier.

Regardless of what -qdescriptor setting is in effect,

applications containing object-oriented constructs will use

the v2 suboption data structure format for those constructs,

and will not be compatible with objects compiled with XL

Fortran V10.1 and earlier. You should consider explicitly

specifying the v2 suboption if you are compiling new

applications that will not need to interact with objects

compiled with XL Fortran V10.1 and earlier.

-qoptdebug|-qnooptdebug When used with optimization levels of -O3 or higher, the

new -qoptdebug option instructs the compiler to produce

optimized pseudocode that can be read by a symbolic

debugger.

-qreport When used together with compiler options that enable

automatic parallelization or vectorization, the -qreport

option produces a pseudo-code listing showing how

program loops are parallelized and vectorized. The report

also provides diagnostic information if the compiler is not

able to parallelize or vectorize a given loop.

-qsaveopt|-qnosaveopt In previous releases, the -qsaveopt option stored the

command line options used to compile a file into the

resulting object file. In Version 11.1, the information stored

in the object file expanded to also include version and level

information for each compiler component invoked during

compilation.

-qsmp=stackcheck This new -qsmp suboption instructs the compiler to check

for stack overflow by slave threads at run time, and issue a

warning if the remaining stack size is less than the number

of bytes specified by the stackckeck option of the

XLSMPOPTS environment variable.

-qversion=verbose The -qversion option adds a new verbose suboption.

Specifying -qversion=verbose instructs the compiler to

display the version and level information for each compiler

component invoked during compilation.

Chapter 2. What’s new for IBM XL Fortran for AIX, V12.1 15

16 XL Fortran: Getting Started

Chapter 3. Setting up and customizing XL Fortran

For complete prerequisite and installation information, refer to ″Before installing″

in the XL Fortran Installation Guide.

Using custom compiler configuration files

You can customize compiler settings and options by modifying the default

configuration file or by creating your own.

A default compiler configuration file is created during XL Fortran compiler

installation, and you can directly modify this configuration file to add default

options for specific needs. However, if you later apply updates to the compiler,

you will also need to reapply all of your modifications to the newly installed

configuration file.

You can avoid this by creating your own custom compiler configuration files. The

compiler has the ability to recognize and resolve compiler settings you specify in

your custom configuration files together with compiler settings specified in the

default configuration file.

If you instruct the compiler to use a custom configuration file, the compiler will

examine and process the settings in that custom configuration file before looking at

settings in the default system configuration file. Compiler updates that may later

affect settings in the default configuration file will not affect the settings in your

custom configuration files.

See ″Using custom compiler configuration files″ in the XL Fortran Compiler Reference

for more information.

© Copyright IBM Corp. 1996, 2008 17

18 XL Fortran: Getting Started

Chapter 4. Developing applications with XL Fortran

Fortran application development consists of repeating cycles of editing, compiling

and linking (by default a single step combined with compiling), and running.

Notes:

1. Before you can use the compiler, you must first ensure that XL Fortran is

properly installed and configured. For more information see the XL Fortran

Installation Guide.

2. To learn about writing Fortran programs, refer to the XL Fortran Language

Reference.

The compiler phases

A typical compiler invocation executes some or all of these activities in sequence.

For link time optimizations, some activities will be executed more than once

during a compilation. As each program runs, the results are sent to the next step in

the sequence.

1. Preprocessing of source files

2. Compilation, which may consist of the following phases, depending on what

compiler options are specified:

a. Front-end parsing and semantic analysis

b. Loop transformations

c. High-level optimization

d. Low-level optimization

e. Register allocation

f. Final assembly
3. Assemble the assembly (.s) files, and the unpreprocessed assembler (.S) files

after they are preprocessed

4. Object linking to create an executable application

To see the compiler step through these phases, specify the -v compiler option when

you compile your application. To see the amount of time the compiler spends in

each phase, specify -qphsinfo.

Editing Fortran source files

To create Fortran source programs, you can use any text editor available to your

system, such as vi or emacs.

Source programs must be saved using a recognized file name suffix. See the “XL

Fortran input and output files” on page 24 for a list of suffixes recognized by XL

Fortran.

For a Fortran source program to be a valid program, it must conform to the

language definitions specified in the XL Fortran Language Reference.

© Copyright IBM Corp. 1996, 2008 19

Compiling with XL Fortran

XL Fortran is a command-line compiler. Invocation commands and options can be

selected according to the needs of a particular Fortran application.

Compiling Fortran 77 programs

Where possible, using the xlf compiler invocation maintains compatibility with

existing programs by using the same I/O formats as FORTRAN 77 and some

implementation behaviors compatible with earlier versions of XL Fortran.

The f77 compiler invocation is identical to xlf, assuming that you have not

customized the configuration file.

Though you may need to continue using these invocations for compatibility with

existing makefiles and build environments, programs compiled with these

invocations may not conform to the Fortran 2003, Fortran 95, or Fortran 90

language level standards.

Compiling Fortran 95, or Fortran 90 programs

Use the following invocations (or their variants) to conform more closely to their

corresponding Fortran language standards:

Fortran 95

f95, xlf95

Fortran 90

f90, xlf90

These compiler invocations accept Fortran 90 free source form by default. To use

fixed source form with these invocations, you must specify the -qfixed

command-line option.

I/O formats are slightly different between these commands and the other

commands. I/O formats for the Fortran 95 compiler invocations are also different

from those of Fortran 90 invocations. We recommend that you switch to the

Fortran 95 formats for data files whenever possible.

By default, these invocation commands do not conform completely to their

corresponding Fortran language standards. If you need full compliance, compile

with the following additional compiler option settings:

For full Fortran 90 compliance:

-qlanglvl=90std -qnodirective -qnoescape -qextname

-qfloat=nomaf:rndsngl:nofold -qnoswapomp

For full Fortran 95 compliance:

-qlanglvl=95std -qnodirective -qnoescape -qextname

-qfloat=nomaf:rndsngl:nofold -qnoswapomp

Also, specify the following runtime options before running the program, with a

command similar to the following:

For full Fortran 90 compliance:

export XLFRTEOPTS="err_recovery=no:langlvl=90std"

20 XL Fortran: Getting Started

For full Fortran 95 compliance:

export XLFRTEOPTS="err_recovery=no:langlvl=95std"

The default settings are intended to provide the best combination of performance

and usability, so you should change them only when absolutely required. Some of

the options mentioned above are only required for compliance in very specific

situations. For example, you would need to specify -qextname only when an

external symbol, such as a common block or subprogram, is named main.

Compiling Fortran 2003 programs

Use the following invocations (or their variants) to conform more closely to their

corresponding Fortran language standards:

Fortran 2003

f2003, xlf2003

These compiler invocations are the preferred compiler invocation commands that

you should use when creating and compiling new applications.

They accept Fortran 90 free source form by default. To use fixed source form with

these invocations, you must specify the -qfixed command-line option.

By default, these invocation commands do not conform completely to the Fortran

2003 language standard. If you need full compliance, compile with the following

additional compiler option settings:

-qlanglvl=2003std -qnodirective -qnoescape -qextname

-qfloat=nomaf:rndsngl:nofold -qnoswapomp -qstrictieeemod

Also, specify the following run time options before running the program, with a

command similar to the following:

export XLFRTEOPTS="err_recovery=no:langlvl=2003std:

 iostat_end=2003std:internal_nldelim=2003std"

The default settings are intended to provide the best combination of performance

and usability, so you should change them only when absolutely required. Some of

the options mentioned above are only required for compliance in very specific

situations. For example, you would need to specify -qextname only when an

external symbol, such as a common block or subprogram, is named main.

-qxlf2003 compiler option

The -qxlf2003 compiler option provides backward compatibility with XL Fortran

V10.1 and the Fortran 2003 standard for certain aspects of the language.

When compiling with the Fortran 2003 compiler invocations, the default setting is

-qxlf2003=polymorphic. This setting instructs the compiler to allow polymorphic

items such as the CLASS type specifier and SELECT TYPE construct in your

Fortran application source.

For all other compiler invocations, the default is -qxlf2003=nopolymorphic.

Chapter 4. Developing applications with XL Fortran 21

Invoking the compiler

To compile a source program, use the basic invocation syntax shown below:

��

xlf

�

�

input_file

compiler_option

��

The compiler invocation commands perform all necessary steps to compile Fortran

source files, assemble any .s and .S files, and link the object files and libraries into

an executable program.

For new application work, you should compile with xlf or a thread safe

counterpart.

Additional invocation commands are available to meet specialized compilation

needs, primarily to provide explicit compilation support for different levels and

extensions of the Fortran language. See ″Compiling XL Fortran programs″ in the

XL Fortran Compiler Reference for more information about compiler invocation

commands available to you.

When working with source files whose filename extensions indicates a specific

level of Fortran, such as .f03, .f95, .f90, or .f77, compiling with xlf or corresponding

generic thread safe invocations will cause the compiler to automatically select the

appropriate language-level defaults.

Compiling parallelized XL Fortran applications

XL Fortran provides thread safe compiler invocation commands that you can use

when compiling parallelized applications for use in multiprocessor environments.

These invocations are similar to their corresponding base compiler invocations,

except that they link and bind compiled objects to thread safe components and

libraries. The generic XL Fortran thread safe compiler invocation is:
v xlf_r, xlf_r7

XL Fortran provides additional thread safe invocations to meet specific compilation

requirements. See ″Compiling XL Fortran programs″ in the XL Fortran Compiler

Reference for more information.

Note: Using any of these commands alone does not imply parallelization. For the

compiler to recognize SMP or OpenMP directives and activate parallelization, you

must also specify -qsmp compiler option. In turn, you should specify the -qsmp

option only in conjunction with one of these thread safe invocation commands.

When you specify -qsmp, the driver links in the libraries specified on the smp

libraries line in the active stanza of the configuration file.

For more information on parallelized applications see ″Parallel programming″ in

the XL Fortran Optimization and Programming Guide.

22 XL Fortran: Getting Started

POSIX Pthreads API support

On AIX Version 5.1 and higher, XL Fortran supports 64-bit thread programming

with the 1003.1-1996 (POSIX) standard Pthreads API. It also supports 32-bit

programming with both the Draft 7 and the 1003.1-1996 standard APIs.

You can use invocation commands (which use corresponding stanzas in the xlf.cfg

configuration file) to compile and then link your programs with either the

1003.1-1996 standard or the Draft 7 interface libraries.

v To compile and then link your program with the 1003.1-1996 standard interface

libraries, use the _r variants of the compiler invocation commands. For example,

you could specify:

fortran_r test.f

v To compile and then link your program with the Draft 7 interface libraries, use

the _r variants of the compiler invocation commands. For example, you could

specify:

fortran_r7 test.f

Apart from the level of thread support, the _r7 invocation variants and their

corresponding stanzas in the vac.cfgvac.cfgxlf.cfg configuration file provide the

same support as their corresponding _r counterparts.

Specifying compiler options

Compiler options perform a variety of functions, such as setting compiler

characteristics, describing the object code to be produced, controlling the diagnostic

messages emitted, and performing some preprocessor functions.

You can specify compiler options:
v On the command-line with command-line compiler options

v In your source code using directive statements

v In a makefile

v In the stanzas found in a compiler configuration file

v Or by using any combination of these techniques

It is possible for option conflicts and incompatibilities to occur when multiple

compiler options are specified. To resolve these conflicts in a consistent fashion, the

compiler usually applies the following general priority sequence to most options:
1. Directive statements in your source file override command-line settings

2. Command-line compiler option settings override configuration file settings

3. Configuration file settings override default settings

Generally, if the same compiler option is specified more than once on a

command-line when invoking the compiler, the last option specified prevails.

Note: Some compiler options do not follow the priority sequence described above.

For example, the -I compiler option is a special case. The compiler searches any

directories specified with -I in the xlf.cfg file before it searches the directories

specified with -I on the command-line. The option is cumulative rather than

preemptive.

See the XL Fortran Compiler Reference for more information about compiler options

and their usage.

Chapter 4. Developing applications with XL Fortran 23

You can also pass compiler options to the linker, assembler, and preprocessor. See

″Specifying options on the command line″ in the XL Fortran Compiler Reference for

more information about compiler options and how to specify them.

XL Fortran input and output files

These file types are recognized by XL Fortran.

For detailed information about these and additional file types used by the

compiler, see ″Types of input files″ in the XL Fortran Compiler Reference and ″Types

of output files″ in the XL Fortran Compiler Reference.

 Table 8. Input file types

Filename extension Description

.a Archive or library files

.f, .F, .f77, .F77, .f90, .F90,

.f95, .F95, .f03, .F03

Fortran source files

.mod Module symbol files

.o Object files

.s Assembler files

.S Unpreprocessed assembler files

.so Shared object files

 Table 9. Output file types

Filename extension Description

a.out Default name for executable file created by the compiler

.mod Module symbol files

.lst Listing files

.o Object files

.s Assembler files

.so Shared object files

Linking your compiled applications with XL Fortran

By default, you do not need to do anything special to link an XL Fortran program.

The compiler invocation commands automatically call the linker to produce an

executable output file.

For example, running the following command:

xlf file1.f file2.o file3.f

compiles file1.f and file3.f to produce the object files file1.o and file3.o,

then all object files (including file2.o) are submitted to the linker to produce one

executable.

Compiling and linking in separate steps

To produce object files that can be linked later, use the -c option.

xlf -c file1.f # Produce one object file (file1.o)

xlf -c file2.f file3.f # Or multiple object files (file2.o, file3.o)

xlf file1.o file2.o file3.o # Link object files with default libraries

24 XL Fortran: Getting Started

For more information about compiling and linking your programs, see ″Linking XL

Fortran programs″ in the XL Fortran Compiler Reference.

Linking new objects with existing ones

If you have .o or other object files that you compiled with an earlier versions of XL

Fortran, you can link them with object files that you compile with the current level

of XL Fortran.

See ″Linking new objects with existing ones″ in the XL Fortran Compiler Reference

for more information.

Relinking an existing executable file

The linker accepts executable files as input, so you can link an existing executable

file with updated object files.

You cannot, however, relink executable files that were previously linked using the

-qipa option.

If you have a program consisting of several source files and only make localized

changes to some of the source files, you do not necessarily have to compile each

file again. Instead, you can include the executable file as the last input file when

compiling the changed files:

 xlf95 -omansion front_door.f entry_hall.f parlor.f sitting_room.f \

 master_bath.f kitchen.f dining_room.f pantry.f utility_room.f

 vi kitchen.f # Fix problem in OVEN subroutine

 xlf95 -o newmansion kitchen.f mansion

Limiting the number of files to compile and link the second time reduces the

compile time, disk activity, and memory use.

Note: You should avoid this type of linking unless you are experienced with

linking. If done incorrectly, it can result in interface errors and other problems. If

you do encounter problems, compiling with the -qextchk compiler option can help

you diagnose problems with linking.

Dynamic and static linking

XL Fortran allows your programs to take advantage of the operating system

facilities for both dynamic and static linking.

Dynamic linking means that the code for some external routines is located and

loaded when the program is first run. When you compile a program that uses

shared libraries, the shared libraries are dynamically linked to your program by

default. Dynamically linked programs take up less disk space and less virtual

memory if more than one program uses the routines in the shared libraries. During

linking, they do not require any special precautions to avoid naming conflicts with

library routines. They may perform better than statically linked programs if several

programs use the same shared routines at the same time. They also allow you to

upgrade the routines in the shared libraries without relinking.

Because this form of linking is the default, you need no additional options to turn

it on.

Static linking means that the code for all routines called by your program becomes

part of the executable file.

Chapter 4. Developing applications with XL Fortran 25

Statically linked programs can be moved to and run on systems without the XL

Fortran runtime libraries. They may perform better than dynamically linked

programs if they make many calls to library routines or call many small routines.

They do require some precautions in choosing names for data objects and routines

in the program if you want to avoid naming conflicts with library routines. They

also may not work if you compile them on one level of the operating system and

run them on a different level of the operating system.

Running your compiled application

The default file name for the program executable file produced by the XL Fortran

compiler is a.out. You can select a different name with the -o compiler option.

To run a program, enter the name of the program executable file together with any

run time arguments on the command line.

You should avoid giving your program executable file the same name as system or

shell commands, such as test or cp, as you could accidentally execute the wrong

command. If you do decide to name your program executable file with the same

name as a system or shell command, you should execute your program by

specifying the path name to the directory in which your executable file resides,

such as ./test.

Canceling execution

To suspend a running program, press the Ctrl+Z key while the program is in the

foreground. Use the fg command to resume running.

To cancel a running program, press the Ctrl+C key while the program is in the

foreground.

Setting runtime options

You can use environment variable settings to control certain runtime options and

behaviors of applications created with the XL Fortran compiler. Other environment

variables do not control actual runtime behavior, but can have an impact on how

your applications will run.

For more information on environment variables and how they can affect your

applications at run time, see the XL Fortran Installation Guide.

Running compiled applications on other systems

In general, applications linked on a system using an earlier version of AIX will run

with more recent versions of AIX. However, applications linked on a system using

a newer version of AIX will not necessarily run with earlier versions of AIX.

If you want to run an application developed with the XL Fortran compiler on

another system that does not have the compiler installed, you will need to install a

runtime environment on that system.

You can obtain the latest XL Fortran Runtime Environment PTF images, together

with licensing and usage information, from the XL Fortran Support page at:

www.ibm.com/software/awdtools/fortran/xlfortran/support

26 XL Fortran: Getting Started

 http://www.ibm.com/software/awdtools/fortran/xlfortran/support

XL Fortran compiler diagnostic aids

XL Fortran issues diagnostic messages when it encounters problems compiling

your application. You can use these messages and other information provided in

compiler output listings to help identify and correct such problems.

For more information about listing, diagnostics, and related compiler options that

can help you resolve problems with your application, see the following topics in

the XL Fortran Compiler Reference:

v ″Understanding XL Fortran compiler listings″

v ″Error checking and debugging options″

v ″Listings, messages, and compiler information options″

Debugging compiled applications

You can use a symbolic debugger to debug applications compiled with XL Fortran.

Specifying the -g or -qlinedebug compiler options at compile time instructs the XL

Fortran compiler to include debugging information in compiled output. For more

information debugging options, see ″Error checking and debugging″ in the XL

Fortran Compiler Reference.

You can then use dbx or any other symbolic debugger that supports the AIX

XCOFF executable format to step through and inspect the behavior of your

compiled application.

Optimized applications pose special challenges when debugging. When debugging

highly optimized applications, you should consider using the -qoptdebug compiler

option. For more information about optimizing your code, see ″Optimizing your

applications″ in the XL Fortran Optimization and Programming Guide.

Determining what level of XL Fortran is installed

If contacting software support for assistance, you will need to know what level of

XL Fortran is installed on a particular machine.

To display the version and release level of the compiler you have installed on your

system, invoke the compiler with the -qversion compiler option.

For example, to obtain detailed version information, enter the following at the

command line:
xlf -qversion=verbose

Chapter 4. Developing applications with XL Fortran 27

28 XL Fortran: Getting Started

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2008 29

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

8200 Warden Avenue

Markham, Ontario L6G 1C7

Canada

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

30 XL Fortran: Getting Started

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. 1998, 2008. All rights reserved.

This software and documentation are based in part on the Fourth Berkeley

Software Distribution under license from the Regents of the University of

California. We acknowledge the following institution for its role in this product’s

development: the Electrical Engineering and Computer Sciences Department at the

Berkeley campus.

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A complete and current list of IBM trademarks is

available on the Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the

United States, other countries, or both and is used under license therefrom.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices 31

http://www.ibm.com/legal/copytrade.shtml

32 XL Fortran: Getting Started

Index

Special characters
.a files 24

.f and .F files 24

.i files 24

.lst files 24

.mod files 24

.o files 24

.s files 24

.S files 24

Numerics
64-bit environment 4

A
a.out file 24

archive files 24

assembler
source (.s) files 24

source (.S) files 24

B
basic example, described ix

C
code optimization 4

compilation
sequence of activities 19

compiler
controlling behavior of 23

invoking 20

running 20

compiler options
conflicts and incompatibilities 23

specification methods 23

compiling
SMP programs 22

D
dbx debugger 6, 27

debugger support 27

output listings 27

symbolic 6

debugging 27

debugging compiled applications 27

debugging information, generating 27

directives 14

dynamic linking 25

E
editing source files 19

executable files 24

executing a program 26

executing the linker 24

F
f2003 command

level of Fortran standard

compliance 21

f77 command
description 20

level of Fortran standard

compliance 20

f90 command
description 20

f95 command
description 20

files
editing source 19

input 24

output 24

fort77 command
description 20

Fortran 2003
compiling programs written for 21

Fortran 90
compiling programs written for 20

Fortran 95
compiling programs written for 20

I
input files 24

invocation commands 22

invoking a program 26

invoking the compiler 20

L
language standards 2

language support 2

level of XL Fortran, determining 27

libraries 24

linking
dynamic 25

static 25

linking process 24

listings 24

M
migration

source code 23

mod files 24

multiprocessor systems 5, 7

O
object files 24

creating 24

linking 24

OMP directives 7

OpenMP 5

optimization
programs 4

output files 24

P
parallelization 5, 7

performance
optimizing transformations 4

POSIX Pthreads
API support 23

problem determination 27

programs
running 26

R
running the compiler 20

runtime
libraries 24

runtime environment 26

runtime options 26

S
shared memory parallelization 5, 7

shared object files 24

SMP
programs, compiling 22

SMP programs 5

source files 24

source-level debugging support 6

static linking 25

symbolic debugger support 6

T
tools 3

cleanpdf utility 3

custom installation 3

install 3

mergepdf utility 3

resetpdf utility 3

showpdf utility 3

xlfndi 3

U
utilities 3

cleanpdf 3

custom installation 3

install 3

mergepdf 3

resetpdf 3

showpdf 3

xlfndi 3

© Copyright IBM Corp. 1996, 2008 33

V
vac.cfg file 23

X
xlf command

description 20

level of Fortran standard

compliance 20, 21

xlf_r command
description 20

for compiling SMP programs 22

level of Fortran standard

compliance 20

xlf_r7 command
description 20

for compiling SMP programs 22

level of Fortran standard

compliance 20, 21

xlf2003 command
level of Fortran standard

compliance 21

xlf2003_r command
level of Fortran standard

compliance 21

xlf2003_r7 command
level of Fortran standard

compliance 21

xlf90 command
description 20

level of Fortran standard

compliance 20

xlf90_r command
description 20

for compiling SMP programs 22

level of Fortran standard

compliance 20

xlf90_r7 command
description 20

for compiling SMP programs 22

level of Fortran standard

compliance 20

xlf95 command
description 20

xlf95_r command
description 20

for compiling SMP programs 22

level of Fortran standard

compliance 20

xlf95_r7 command
description 20

for compiling SMP programs 22

level of Fortran standard

compliance 20

34 XL Fortran: Getting Started

����

Program Number: 5724-U82

Printed in USA

GC23-8898-00

	Contents
	About this document
	Conventions
	Related information
	IBM XL Fortran information
	Standards and specifications
	Other IBM information

	Technical support
	How to send your comments

	Chapter 1. Introducing XL Fortran
	Commonality with other IBM compilers
	Hardware and operating system support
	A highly configurable compiler
	Language standards compliance
	Source-code migration and conformance checking

	Tools and utilities
	Program optimization
	64-bit object capability
	Shared memory parallelization
	Diagnostic listings
	Symbolic debugger support

	Chapter 2. What's new for IBM XL Fortran for AIX, V12.1
	Operating system support
	XL Fortran language-related updates
	OpenMP 3.0
	Performance and optimization
	New or changed compiler options and directives
	Enhancements added in Version 11.1
	Enhanced support for Fortran 2003
	Architecture and processor support
	Performance and optimization
	Directives and intrinsics in Version 11.1

	Other new or changed compiler options

	Chapter 3. Setting up and customizing XL Fortran
	Using custom compiler configuration files

	Chapter 4. Developing applications with XL Fortran
	The compiler phases
	Editing Fortran source files
	Compiling with XL Fortran
	Invoking the compiler
	Compiling parallelized XL Fortran applications
	Specifying compiler options
	XL Fortran input and output files

	Linking your compiled applications with XL Fortran
	Linking new objects with existing ones
	Relinking an existing executable file
	Dynamic and static linking

	Running your compiled application
	XL Fortran compiler diagnostic aids
	Debugging compiled applications
	Determining what level of XL Fortran is installed

	Notices
	Trademarks and service marks

	Index

